
Parametric plate-bridge dynamic filter model of violin
radiativity

George Bissingera)

East Carolina University, Greenville, North Carolina 27858

(Received 29 September 2011; revised 3 May 2012; accepted 3 May 2012)

A hybrid, deterministic-statistical, parametric “dynamic filter” model of the violin’s radiativity pro-

file [characterized by an averaged-over-sphere, mean-square radiativity hR(x)2i] is developed

based on the premise that acoustic radiation depends on (1) how strongly it vibrates [characterized

by the averaged-over-corpus, mean-square mobility hY(x)2i] and (2) how effectively these vibra-

tions are turned into sound, characterized by the radiation efficiency, which is proportional to

hR(x)2i/hY(x)2i. Two plate mode frequencies were used to compute 1st corpus bending mode fre-

quencies using empirical trend lines; these corpus bending modes in turn drive cavity volume flows

to excite the two lowest cavity modes A0 and A1. All widely-separated, strongly-radiating corpus

and cavity modes in the low frequency deterministic region are then parameterized in a dual-Helm-

holtz resonator model. Mid-high frequency statistical regions are parameterized with the aid of a

distributed-excitation statistical mobility function (no bridge) to help extract bridge filter effects

associated with (a) bridge rocking mode frequency changes and (b) bridge-corpus interactions from

14-violin-average, excited-via-bridge hY(x)2i and hR(x)2i. Deterministic-statistical regions are

rejoined at �630 Hz in a mobility-radiativity “trough” where all violin quality classes had a com-

mon radiativity. Simulations indicate that typical plate tuning has a significantly weaker effect on

radiativity profile trends than bridge tuning. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4726010]

PACS number(s): 43.75.De, 43.40.At, 43.40.Rj [JW] Pages: 465–476

I. INTRODUCTION

It is no simple matter to separate “great” violins from

“good” ones by straightforward vibration or acoustic radia-

tion measurements. At present this evaluation is best handled

by the great violinists themselves. As a consequence a psy-

choacoustic curtain is drawn between the measurements

(and physics) and the quality rating. No truly closed-form

analytic model can pursue this issue. Mathematically intrac-

table shapes, irreproducible materials, glue joints between

porous materials, the violin bridge filter and its mode-

specific interaction with the corpus (topþribsþback), vibro-

acoustic interactions between cavity air and corpus shell

motions, and the conversion of mechanical energy to acous-

tic energy by a ported, doubly arched, nominally orthotropic

composite shell structure only add to the formidable

obstacles to constructing any comprehensive analytic model.

Yet the very consistency of certain legendary makers

argues for them having some underlying “conceptual” sys-

tem to navigate their way to a successful conclusion. Can

we, centuries displaced from these makers and with no real

evidentiary trail, while still respecting the underlying science

of structural acoustics, gain some understanding of their

thinking? Confining ourselves to traditional violins with tra-

dition materials and shapes we start by assuming that only

those violin substructures that makers commonly “tune”

prior to sale, viz., the top and back plates (pre-assembly) and

the bridge (post-assembly setup, always with sound post),

are the most important determiners of violin sound. (Our pre-

sumption being that no business would take the time and

effort to do something extra if it did not improve the sell-

ability—the sound—of their product.)

Always staying within these boundaries we choose the

radiativity R(x), the complex frequency response function

computed from the ratio of far-field microphone pressure

response P(x) (measured at 266 points over a sphere in an

anechoic chamber) to the hammer-impact driving force F(x)

applied at the violin bridge corner, i.e., P(x)/F(x) in Pa/N,

as our basic measure of violin radiation. The violin’s radia-

tivity “profile” is then computed from the mean-square, aver-

age-over-sphere total radiativity hR(x)2i.
Our ultimate goal is to create a plausible “skeleton”

radiativity profile filter model that captures the main struc-

tures of hR(x)2i by choosing parameters that reflect compre-

hensive radiation and vibration experiments while still being

consistent with general structural acoustics principles. In

effect to model the violin not by what it is, but by what it
does—a dynamic filter, as it were, interposed between driv-

ing force and sound, to examine trends based solely on var-
iations in plate and bridge tunings.

II. DYNAMIC FILTER MODEL

The filter functions used in the model arise from the

mathematical implementation of a simple concept expressed

initially in the form of an identity. Because there is no theory

capable of computing the radiativity profile starting with a

force applied at the bridge, our approach is to let the violin

“solve” this problem, then comprehensively measure dynamic
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responses and parameterize observed systematic behaviors in

a way consistent with basic structural acoustics.

A. Fundamental premise

For a driving force applied at the bridge the fundamental

premise of the dynamic filter model is that the sound radia-

tion from the violin depends on two factors: (1) how vigo-

rously it is vibrating, parameterized by hv(x)2i, the mean-

square, surface-normal velocity averaged over the corpus,

and (2) how effectively vibrational motions are converted to

radiation, parameterized by hP(x)2i the mean-square pres-

sure averaged over a sphere, divided by hv(x)2i, both factors

treated as “filters.” This premise is expressed in the identity

hP(x)2i¼ hv(x)2i�fhP(x)2i/hv(x)2ig, a “cascade” of two fil-

ters whose product characterizes the violin’s skeleton radia-

tivity profile. To incorporate a mechanism for exciting the

two lowest cavity modes, low frequency modes are modeled

independently and reattached to the mid-high frequency

region.

An equivalent identity that explicitly incorporates the

driving force at the bridge involves the experimental modal

analysis (EMA) mobility Y(x), the complex frequency

response function computed from v(x)/F(x), which is used to

compute a mean-square, averaged-over-corpus hY(x)2i. [Our

17-violin radiativity database contains only 14 violins with

hR(x)2i and hY(x)2i.] Hence hR(x)2i¼ hY(x)2i�{hR(x)2i/
hY(x)2i}.hY(x)2i deals only with the vibrational chain:

string!bridge!corpus, while the hR(x)2i/hY(x)2i term

deals only with the transformation of vibrational motion into

acoustic radiation, embodied in the model by the dimension-

less radiation efficiency Reff(x). [Henceforth for brevity fre-

quency dependences for P(x), R(x), v(x), Y(x) and Reff(x)

can always be understood.]

Our unique experimental circumstance—a driving force

applied at the bridge (zero-mass-loading so as not to affect

the bridge rocking frequency) that is common to simultane-
ous mobility and radiativity response measurements on a

violin suspended “free-free” in an anechoic chamber—

makes hR2i/hY2i a reliable substitute for hP2i/hv2i. Driving

forces applied at the bridge necessarily incorporate bridge

“filter” effects including: (a) bridge rocking frequency frock

(where frock is normally measured with the bridge feet

clamped in a vise) and (b) the interaction of the bridge feet

with the top plate in the “bridge island” region.

The defining equation for the dynamic filter model now

becomes

hR2i ¼ hY2i hP
2i
hv2i ; (1)

where hP2i/hv2i, calculated from hR2i/hY2i, contains the dy-

namics needed to compute Reff.

B. Deterministic-statistical division

Cremer in 1984 suggested1 “there is a range of low fre-

quencies in which easily separable natural frequencies can be

examined deterministically”—our signature mode region—

“and a higher one at which only statistical statements are

possible in the frequency domain,” the latter where modes

overlap significantly, mode tracking becomes problematical,

and statistical band-averages over multiple modes become

more suitable. Our hybrid dynamic filter model is based on

just such a scheme. These distinct regions are separated in the

violin by a broad, relatively featureless mobility-radiativity

“trough” transition region from �600 to �750 Hz that fea-

tures a key experimental finding, viz., at �630 Hz the f-hole,

surface and background radiativity contributions sum to hRi
� 0.19 Pa/N, irrespective of violin quality class, to provide a

crucial splice point for the independent deterministic and sta-

tistical regions.

In the proposed deterministic region below 600 Hz five

well-separated “signature” modes appear: the two coupled

lowest cavity modes A0 and A1 (fA0 � 275 Hz, fA1

� 465 Hz), and three “corpus” modes: CBR near 400 Hz and

the violin’s 1st corpus bending modes B1– and B1þ with

fB1–� 470 Hz and fB1þ� 540 Hz. A0, B1– and B1þ are

always strong radiators, while A1 radiation varies over a sur-

prisingly wide range. CBR generally radiates so weakly that

it will be ignored. These signature modes, suitably shifted in

frequency, were also seen across the entire violin octet,2

arguing for great generality in this choice of modes for the

deterministic region. The bridge motions in these two

regions were also dissimilar: in the deterministic region the

bridge rocked approximately as a rigid body, while in the

statistical region bridge motions can be characterized as

quiet-feet/rocking-wiggling top.3

Some important experimental correlations needed in the

model have no strong theoretical base, e.g., (1) an empirical

trend line linkage between the frequencies (in the common

labeling scheme) of violin plate modes #2 and #5, f2 and f5

(where f2 is approximately one-half f5) and the B1 modes

provides an essential computational path4 from f2,f5 $
B1–,B1þ, and (2) a companion empirical trendline (shown

later) linking f5 to an effective critical frequency for the vio-

lin. [Note that a similarly important empirical relationship,5

1.5� f5, was used in Schelleng’s flat-plate scaling scheme6

to successfully place the “main wood” resonance (now the

B1 modes) near the pitch of the upper middle string across

the entire 31/2 octave range of the violin octet.]

In the statistical region 250 Hz band-averages were used

to examine systematic modal-average behavior vs band cen-

ter frequency fc. To help isolate bridge filter effects a statisti-

cal mobility for distributed (e.g., roving hammer strikes over

corpus, acoustic excitation, etc.) excitation of the violin was

used in conjunction with experimental 14-violin bridge-exci-

tation average mobility to back out a bridge filter function. A

separate function based on systematic measurements accom-

panying bridge waist-wing trims was used to simulate the

effect of bridge “tuning.”

III. DETERMINISTIC REGION

The complexity of the signature mode region has been

appreciated for quite a while. An important clarification of

their interactivity came in an experiment by Weinreich,

Holmes and Mellody7 (WHM) who examined wood and cav-

ity air motions driven by acoustic excitation as one or more

466 J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 George Bissinger: Parametric plate-bridge dynamic filter model

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



corks were removed from 42 holes drilled in the ribs of the

“swiss-cheese” violin of Hutchins.8 They concluded that

the experimentally observed interaction between A0, A1 and

the B1 modes could be modeled by incorporating coupling

in a “dynamic modes” theoretical approach to the coupled

vibrations of fluids and enclosures. Based on (1) the conclu-

sions of Weinreich et al., (2) a range of prior experimental

data, plus (3) two additional experimental results presented

below that support the sound hole sum rule of Weinreich,9

the assumption that A0 excitation is driven by B1 wall

motions alone is the basis of our deterministic region model.

A. A0 excitation

A0, the only always-strongly-radiating mode in the vio-

lin’s lowest octave, has long been understood as being partic-

ularly important to violin sound. Moreover, of 17 violins in

our radiativity database the only statistically important differ-

ence between bad and excellent violins was A0 radiativity

hRA0i.10 (Note that three violins had partial or nonexistent

mobility scans, hence no Reff calculations were possible.)

Any reasonably complete model of the violin’s radiativity

profile requires a plausible model for A0 excitation that

reflects extensive experimental results:

(1) hRA0i decreased as the A0-B1– frequency difference Df

increased.11

(2) Sound post removal drops fA0 by �30 Hz and RA0

greatly decreases.12,13 EMA results show sound post

removal also eliminated a B1–-like mode while a B1þ-

like mode dropped approximately 50 Hz.13

(3) Below 700 Hz, B1� and B1þ show large volume changes

in the k > largest-dimension region, with large in-phase

inter-f-hole, in-phase volume flows (like A0) comparable

to EMA-based estimates of volume changes.14

(4) Varying the bridge’s 1st rocking mode frequency frock—

measured with both feet clamped in a heavy vise—

revealed that mobility-radiativity data for one modern

and one old Italian violin exhibited �1:1 correlation

between RA0 and B1 mode excitation represented by

average bridge foot mobility hYbfi as seen in Fig. 1.

(5) From �0.7 to �2 kHz, frock changes had little or no

effect on corpus mode excitation, hence these modes

cannot be important for A0 excitation. Above 2 kHz frock

changes showed the maximum effect on radiativity at

frequencies near frock that were much larger proportion-

ately than the effect on RA0
3; this lack of �1:1 correla-

tion implies that modes above 2 kHz cannot be important

for A0 excitation. (Further discussion on this matter in

statistical region model.)

(6) RA0 was observed to correlate �1:1 with changes in B1

radiativity RB1 in an Oberlin Violin Acoustics Workshop

experiment where sound post diameter was trimmed in

successive stages on three violins (fA0, fB1 and associ-

ated dampings remained unchanged). The results, shown

in Fig. 2 for the first time, have B1 excitation varying in

a non-systematic way between violins, but RA0 always

followed the B1 variations.

The results in Figs. 1 and 2 reflect the fundamental A0-

B1 linkage in the sound hole sum rule as expressed by Wein-

reich in his response to a violinmaker about what to do to

increase A0 radiativity: “the somewhat surprising answer is,

‘nothing’. Because of the Sound Hole Sum Rule… one can-

not raise the Helmholtz mode without increasing the follow-

ing modes equally.”15 Taking all these results together we

henceforth assume that RA0 directly correlates 1:1 only with

B1 excitation/radiativity.

Since a B1-wall-driven, dual-Helmholtz resonator net-

work model automatically correlates hRA0i with RB1 f-hole

radiativity (the dominant radiative path) in accord with

experiment (Figs. 1 and 2) we choose to employ this model,

acknowledging its formal weaknesses while recognizing that

it offers a convenient formalism to compute total radiativity

in a parametric model that adds B1 surface and higher mode

background contributions to compute hRi for all the strongly

radiating signature modes.

FIG. 1. RA0 vs average B1 bridge foot mobility hYbfi for two violins (both

norm. to lowest value) as frock varied. 2004 dataset (2.8–3.6 kHz: A. Guar-

neri (1660) �; G. Alf ^ (2003) and 2005 dataset (2.6–3.4 kHz: A. Guarneri

4). (Dashed line represents 1:1 correlation to guide eye.)

FIG. 2. (log) RA0 (*), B1– (2) and B1þ (1) radiativity at 0.3 m vs sound

post diameter trims from 6.5 to 5 or 5.5 mm on three violins.
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1. A0-A1 network model

Our model is similar in concept to a successful 1980

Christensen and Vistisen model of low-frequency guitar

sound based on a coupling between the lowest corpus

mode—a (mostly) top plate mode that acted like a piston—

and the Helmholtz cavity resonance.16 A1, due to its cou-

pling to A0 and strong effect on A0 volume dependence in

the violin, was also incorporated, following the 1990 net-

work model of Shaw.17 The A0-A1 coupling inherent in the

Shaw model brings the predicted A0 volume dependence for

a rigid violin-shaped cavity in line with experiment.18 Our

parametric model preserves such essentials of the Shaw

model as two partial volumes connected by a constricted

(pipe) region to incorporate A0 and A1, but does not incor-

porate the Shaw division parameters a (the fraction of

C-bout inertance above the f-hole center point) and b (frac-

tion of f-hole inertance in lower bout volume) in order to

retain the simplicity inherent to a Helmholtz resonator net-

work model for f-hole radiativity computations.

To understand A1 variability in this model consider a

slightly flexible bottle attached neck-to-neck to a similar but

somewhat smaller bottle, with a port drilled somewhere in

the combined neck. (Cf., “one can think of the A1 as a mode

of two Helmholtz resonators attached mouth to mouth.”7)

The smaller bottle corresponds to the upper bout (UB), the

larger bottle to the lower bout (LB) and the neck plus port to

the intermediate waist C-bout (CB) region of the violin with

f-holes. If the bottles are compressed in-phase, air would be

expelled through the port. If the bottles are compressed anti-

phase a “slosh” motion of the interior air would result, with

negligible port air flow. Suppose further that initially only
one bottle was compressed, creating compress and slosh air

motions; the other bottle then being compressed in-phase,

weakly at first, and then increasingly strongly. At some point

the oppositely directed slosh flows associated with each par-

tial volume compression will just cancel out, leaving only

compress flows through the f-holes. Thus slosh flows—and

A1 excitation—arise naturally from an imbalance between
UB-LB cavity volume flows. Lack of slosh flow implies no
A1 excitation-radiation.

Such a dual-Helmholtz resonator with compress and

slosh cavity volume flows corresponding to A0 and A1,

resp., comprises our physical model for A0 and A1 excita-

tion driven by B1 corpus wall motions. Melding two single-

cavity networks19 produces the network shown in Fig. 3.

The nominal violin total volume V is fixed at 2000 cm3, but

apportioned into partial volumes, initially using optimized

rigid cavity Shaw model network values.18 Acoustic impe-

dances were computed from standard Helmholtz resonator

equations:19 UB, LB cavity volumes VUB and VLB used Zcav

� jqc2/Vx; pipe equations used Zpipe � jx (ql/S); pipe

lengths¼ l, cross section area¼S. CB waist area at

bridge¼ SCB, length¼ lcb � 15 cm, broken into two parts lcbu

and lcbl that sum to lcb. Port (f-hole) area Sf � 12 cm2, and lf
� 0.8 cm. The port radiation impedance Zrad � 0.16qx2/c
þ 0.6 jxqa/Sf; port radius/area ratio in 2nd term of Zrad com-

puted from nominal circle-equivalent area Sf¼ pa2, fixed for

all calculations. Additionally, resistive damping was added

to Zrad to achieve measured A0 total damping f � 2.5 (in %-

of-critical, Q � 20); A1 also incorporated resistive damping

terms in the ZCB impedances, adjusted to return experimental

A1 damping of �1%crit. Additional parameter values pro-

vided for a specific violin later.

B1 wall-motion-forced cavity volume flows UUB and

ULB drive the net f-hole volume flow, Uf¼Ufu�Ufl, seen in

Fig. 3 (minus sign from standardized loop direction). UB

and LB pressures, pUB, pLB, respectively, computed from the

model were generally much larger for A1 than A0, and were

reflected in their relative measured wall motions.

The network in Fig. 3 generated the following loop

equations:

#1: ðUUB–UfuÞZUB ¼ pub; (2)

#2: ðUfu–UUBÞZUB þUfuZCBU þUf ðZrad þ Zf Þ ¼ 0; (3)

#3: ðUfl �ULBÞZLB þUflZCBL �Uf ðZrad þ Zf Þ ¼ 0;

(4)

#4: ðULB–UflÞZLB ¼ plb: (5)

With solution

Uf ¼ fðZf ZUBUUB þ ZLBZUBUUB þ ZCBLZUBUUB

þ ZradZUBUUB þ ZLBZradULB þ ZLBZf ULBÞ
� ðZradZUBUUB þ ZLBZradULB þ ZUBZLBULB

þ Zf ZUBUUB þ ZLBZf ULB þ ZCBUZLBULBÞg=D;

(6)

where

D¼ ZLBZUBþZradZUBþZf ZCBUþZf ZUBþZLBZrad

þZLBZf þZLBZCBUþZCBLZf þZCBLZCBU

þZCBLZUBþZradZCBUþZCBLZrad: (7)

UUB and ULB used a complex resonance wall-motion mobil-

ity equation of the form x/[j(x2�xB1
2)þxxB1/QB1] for

each B1. The in-phase cavity volume flows create the deep

radiativity minimum seen between B1 modes. Given the net

f-hole volume flow the power radiated through the port was

computed from 1=2Re(Zrad)Uf
2, where Re(Zrad)¼ 0.16qx2/c.

2. Surface and background contributions

In 2007 a “patch” near-field acoustical holography

(pNAH) experiment on a Strad copy violin14 demonstrated

FIG. 3. Dual Helmholtz resonator network with relevant impedances, vol-

ume flows, and loops (standardized cavity volume flow direction, loops

numbered for later reference).
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that B1 mode f-hole radiativity Rf exceeded surface radiativ-

ity. For B1� and B1þ total radiativity, Rf¼ 0.67hRB1�i and

0.56hRB1þi, hence B1 surface-only radiation can be computed

from the difference hRB1i�Rf. (A1-induced surface motion

from cavity volume flows cannot be computed in this model,

although variability in A1 radiativity can be understood.)

Except for this one violin all simulations used Rf

� 0.6hRB1i for both B1. The nominal 40% corpus surface

contribution was incorporated into total B1 radiativity by

adding a resonant surface radiativity component Rsurf based

on the same B1 frequency-damping values used for Rf calcu-

lations, always adjusted to keep Rsurf/Rf¼ 0.67. The con-

glomerated response tail for all modes above the signature

modes was accounted for by adding a nominal background

contribution Rbgd ! f, constrained to give total radiativity

hRi¼Rf þRsurfþRbgd � 0.19 Pa/N at 630 Hz.

3. Strad copy simulation

The optimized A0-A1 rigid cavity network model17 pro-

vided initial partial volumes and pipe lengths that were then

adjusted slightly to return fA0¼ 275 Hz and fA1¼ 453 Hz for

the Strad copy violin: volumes (cm3) V¼ 2000 (fixed), VUB

¼ 672, VLB¼ 850; areas (cm2) SCB¼ 50, Sf¼ 12 (both fixed);

lengths (cm) lcbu¼ 12.2, lcbl¼ 7.4, lcb¼ 19.6, lf¼ 0.80; Rf

¼ 0.67hRi and 0.56hRi for B1– and B1þ, resp. Using fB1�

¼ 489 Hz, fB1�¼ 1.2%crit, fB1þ¼ 515 Hz, fB1þ¼ 1.1%crit,

RA0 was computed after adjusting UUB and ULB to achieve

experimental radiativity values RB1–¼ 0.72 Pa/N and

RB1þ¼ 0.84 Pa/N. Comparisons between experiment and

model simulations for RA0 are shown in Fig. 4 (statistical

region discussed later) to validate the model, Estimating RA0

trends as B1 properties change is now quite straightforward.

B. RA0 dependence on B1 parameters

Using our 14-violin average fA0¼ 275 Hz and fA1

¼ 469 Hz, the systematic dependence of relative A0 radiativity

RA0 (rel.) on B1 frequencies (B1 radiativity fixed) was exam-

ined. Calculations of RA0 (rel.) were performed over a range

of 430–510 Hz for the lower B1 mode for three cases: (1) only

one B1, (2) two B1 with fixed frequency difference ¼ 70 Hz,

and (3) two B1 with average frequency¼ 505 Hz (one B1

drops while the other rises in frequency). Results are presented

in Fig. 5.

The strong correlation between A0-B1 Df and RA0 (rel.)

in Fig. 5 mirrors that seen experimentally.11 Pertinent to the

effect of sound post removal, note that having two B1 modes

greatly strengthens RA0 (rel.). The constant-average/rising-

Df between two B1 modes results in a significantly slower

decrease in RA0 (rel.) than the rising-average/fixed-70 Hz Df.

Larger f5/f2 ratios were also observed to correlate with a

greater spread in B1frequencies.4

1. Additional predictions for RA0

Experimental and predicted values of hRA0i were

�0.80 Pa/N for the smallest A0-B1– Df. At the other extreme

the Strad copy violin of Fig. 4 with almost the largest Df

gave hRA0i � 0.33 Pa/N, vs the experimental 0.29 Pa/N.

To properly interpret the effects of sound post removal

on RA0 requires prior EMA results, viz., fA0 dropped approxi-

mately 30 Hz, the B1–-like mode disappeared, a B1þ-like

mode dropped �50 Hz. Pre-removal fB1�¼ 470 Hz and fB1þ

¼ 540 Hz leads to an initial two-B1 estimate (interpolated

to bypass A1 interference) of RA0 (rel.) � 1.7. Post-
removal (following the zigzag line in Fig. 5) there is only one

B1þ-like mode at 490 Hz and RA0 (rel.)¼ 0.31, indicating a

drop-off of �5.4. Since fA0 dropped from 275 to 245 Hz, cre-

ating an additional �30% drop-off, RA0 should fall by a fac-

tor of �7 overall, consistent with that seen by Meinel.12

2. Predictions for A1 excitation

(1) A1 had Rf � 0 as expected for a cavity mode with a pres-

sure node at the f-holes

(2) pub and plb depend strongly on UUB/ULB: UUB/ULB <0.7

or >1.1 gave A1 pressures �10� A0, consistent with

observed A0-A1 relative induced surface motions.

FIG. 4. Deterministic region: experimental hR2i for Strad copy violin (thin

line) vs dual-Helmholtz model (- -, light shade) norm. at 630 Hz (*). Statis-

tical region ( , thick line, darker shade) with frock � 2.8 kHz also shown

(see text).

FIG. 5. Dual-Helmholtz model RA0 (rel.) for A0 at 275 Hz driven by: one-

B1 (�), two-B1 with fixed Df¼ 70 Hz (~), and two-B1 with 505 Hz average

frequency (þ). Gray zig-zag line represents sound post removal (see text).
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(3) An A1 pressure null resulted for UUB/ULB � 0.92, sug-

gesting little induced surface motion and hence little A1

radiation.

(4) When fA1 � fB1� A1 pressures increase. Since the lower

bout has greater area and compliance than the upper bout,

greater internal pressures over a larger, more compliant

area imply a weak-dipole/dominant-monopole aspect to

A1 surface mobility, seen most prominently in the Plow-
den del Gesu violin,10 which had hRA1i � hRB1�i.

(5) If arch and rib height are varied:

(a) fixed-rib-height/increased-arching increases violin

volume and the C-bout cross-section area; net result

- fA0 falls with increased arching while fA1 rises.

(b) fixed-arching/increased-rib-height; net result - fA0

decreases, fA1 hardly changes.

In summary the dual-Helmholtz network model pro-

vides systematic RA0 predictions in agreement with a broad

range of experiment when B1 radiativity and frequency-

damping information is available for a particular violin.

However it is really more appropriate for computing radia-

tivity profile trends when B1 f, f and hRB1i starting values

are available and then varying plate and bridge tuning, the

next step in the model.

IV. STATISTICAL REGION

The defining equation for the dynamic filter model, Eq.

(1), where hP2i/hv2i was computed from hR2i/hY2i contains

all the dynamics needed to compute the radiation efficiency,

viz., Reff¼hR2i/hY2i�(A/q2
oc2S) (A¼microphone-sphere

area¼ 18.1 m2 and S¼ violin surface area¼ 0.13 m2), hence

hR2i / hY2i � Reff : (8)

The first term on the RHS deals with corpus vibrational

motion gained from a driving force applied at the bridge,

while the 2nd term deals with how effectively the vibrational

motion is transformed to acoustic radiation. These two terms

act as independent filter functions, the string!bridge!
corpus “gatekeeper” (so labeled because the bridge is such a

strong filter for string energy on its way through to the cor-

pus) and the Reff “egress”; neither term has any specific vio-

lin shape or material parameters, all of which have been

subsumed into the measured dynamics.

A. Damping—the “egress” filter

To put the simpler egress filter into a damping context for

loss calculations, the violin is treated as a “leaky bucket” with

three possible loss paths, viz., radiation, internal (heat) and

support fixture damping. The total damping ftot sums these,

i.e., ftot¼ fradþ fintþ ffix; ftot was taken from mobility spec-

tra fits (in %crit), frad was computed directly from Reff, and

ffix� 0 (effectively eliminated by our “free-free” support sys-

tem), thus ftot � fradþ fint. To parameterize the total damping

a simple, reliable (r> 0.9) power-law fit to the ftot data, ftot !
f–0.34, was chosen for use throughout our analysis, rather than

presuming some functional dependence for fint.
11 (Again, all

damping frequency dependence is understood.)

The simultaneous R and Y measurements led to an

effective critical frequency for the violin,10 utilized here in a

“stylized” way to represent Reff behavior (guided by the

baffled piston’s pressure dependence on velocity, viz., P !
fv): Reff ! f2 up to fcrit, where the dispersive flexural wave

velocity vflex, which rises as f1/2, finally catches up with the

speed of sound in air c. At vflex¼ c, the Reff¼ 1 plateau is

reached, and maintained for f� fcrit.

This stylized Reff behavior is subsequently reflected in

the radiation damping, frad(%crit)¼Reff �(50qocS/2pMf)

!Reff/fM: frad ! f for f< fcrit; for f> fcrit, frad ! f–1, thus

creating a “peak” in frad. Introducing the fraction of corpus

vibrational energy radiated, FRAD¼ frad/ftot, into the egress

leads to Reff ! f M ftot FRAD.

The egress filter always peaks at fcrit because ftot falls off

smoothly, thus frad peaks at fcrit, as does FRAD. To improve

agreement with experiment a constant term was added to frad

below fcrit, while above fcrit, FRAD drop off was modified

slightly to improve agreement with the overall radiativity pro-

file. After substitution and rearrangement Eq. (8) becomes

hR2i / f1=2 MhY2ig � ffntotFRADg: (9)

Violin total mass M now appears naturally. The gatekeeper

has become the driving-force-normalized kinetic energy,

although its blandness cloaks a starkly different reality.

1. fcrit from arched plate f5

The violin’s slotted, doubly-arched, nominally ortho-

tropic, relatively shallow shell defies easy theoretical analysis

in computing a key parameter in the dynamic filter model,

fcrit. Accordingly, rectangular flat plate theory, where

fcrit¼ c2[12(1��2)q/E]1/2/h ! fbend
�1 (fbend¼ bending mode

frequency ! 1/h, h¼ plate thickness, �¼ Poisson’s ratio,

q¼ density, E¼Young’s modulus) suggests an alternative

approach, a power law trend line linking fcrit and fbend.

Flat plate theory predicts fcrit values for nominal violin

plate thicknesses between 4 and 5 kHz for the along-grain

propagation and 9–17 kHz for cross-grain propagation for

the maple back and spruce top plate, respectively.1 The

along-grain values compare well with our 14-violin average

effective fcrit � 3.9 kHz. The very high cross-grain (mode

#2-like) critical frequency implies very low Reff at lower

frequencies and as a consequence little contribution to the

overall radiation, which is predominantly into the top plate

hemisphere at higher frequencies.

Some insight into shell membrane strain effects on the

critical frequency can be gotten by rewriting a shell equation19

fmn¼ (AmnþBmnh2)1/2 as f5¼ (AþBh2)1/2 and evaluating the

A and B coefficients using a systematic plate thinning experi-

ment,20 giving A1/2 � 200 and B1/2� 80 (h in mm). (For f2, A

� 0.) Hence the suggestive rewriting, f5
2¼AþBh2¼ fmemb

2

þ fbend
2, leads to fbend � (f5

2 – 40 000)1/2. For a nominal

f5¼ 350 Hz, fbend � 276 Hz, an approx. 20% reduction. How-

ever since the flexural wave velocity vflex ! f1/2, re-

computing fcrit from fcrit� (c/vflex)2 fbend � (c/L)2/f5
11 leads to

an �20% increase in fcrit. As f5 decreases, leading to a propor-

tionately larger membrane component, fcrit increases even

more relative to the flat plate prediction. Expressing plate
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mode frequencies in the form f ! fcrit
–x, x¼ 1 for a flat

plate, but for a shell x< 1. Such an fcrit “stretch” appears

in Fig. 6 where f2, f5, fB1� and fB1þ are plotted vs effec-

tive fcrit for nine violins with plate and corpus mode data.

(The high predicted fcrit for mode #2 implies small effect

on the effective fcrit estimate.)

Using the trend line equations from Fig. 6 to convert the

14-violin average fcrit � 3.9 kHz into B1 frequencies gave

fB1� � 470 Hz, fB1þ� 543 Hz, in good agreement with actual

experimental averages of 470 and 541 Hz. Similarly, f5 was

predicted to be 349 Hz, compared to the average 352 Hz for

the nine violins with known plate mode frequencies. Both

results validate the trend line equations used. For the Titian
Stradivari (1715) with fcrit � 3650 Hz but no plate mode

frequencies, the trend line prediction f5¼ 354 Hz, can be

compared to a top plate f5¼ 360 Hz for a 1713 Stradivari.21

B1� and B1þ trend line predictions of 476 and 552 Hz were

close to the measured 472 and 546 Hz, respectively. The

trend line equations of Fig. 6 are crucial to computations of

the radiativity profile.

2. FRAD

Figure 7 shows computed FRAD results incorporating:

(1) violin plate mass!M variations from empirical f5!plate

mass relationships20 at three critical frequencies, viz.,

3.3 kHz (minimum observed), 3.9 kHz, (14-violin average)

and 4.6 kHz (maximum observed), and 2) an empirical

“dimple” function to reproduce the experimentally observed

dimple in Reff near 1.6 kHz that carries over into frad. (Plates

comprise nominally half of M.) The simplified FRAD system-

atics show a clear “filter” effect strongly enhancing vibra-

tion-to-radiation conversion near fcrit.

[Although the violin has no obvious resemblance to sim-

ple geometric shapes, it does show characteristics reminis-
cent of the thin-walled cylinder or cylindrical shell, viz., (1)

at the ring frequency fring (¼ longitudinal wave velocity/

circumference) for a thin-walled cylinder the modal density

peaks and (2) above fring Reff dips, rising finally to flat plate

values near fcrit,
22,23 both observed for the violin. Estimates

of the violin’s ring frequency fall near 1 kHz.23 Until more

definitive analysis emerges “ring” as used here remains only

a convenient label.]

B. The Gatekeeper

In Eq. (9) 1
2

MhY(x)2i must incorporate all the

dynamic effects related to: (1) changing the rocking fre-

quency frock of the bridge (measured after clamping the

bridge feet in a heavy vise), (2) the bridge-bridge island

interface, (3) a modal density peak near 1 kHz, and (4) a

body hill (BH) related to cutting the f-holes,24 where

extensional motion parallel to the bridge feet peaks and

the bridge/bridge island impedance ratio reaches a mini-

mum.10 At present none of these effects has a reliable the-

oretical treatment.

In the statistical region above 630 Hz hY(x)2i will be

replaced by our 14-violin, 250 Hz band-average mobility

hY14
2i, since all strongly radiating signature modes below

600 Hz are covered by the dual-Helmholtz model. Because

all our simultaneous vibration-radiation measurements were

for excitation at the bridge, we must in effect mathematically

transform the original violin excited-via-bridge corpus mo-

bility space to a distributed-excitation space—where no

bridge intercedes between applied force and measured

response—via a statistical mobility function to isolate-

emphasize bridge filter effects.

1. Distributed-excitation statistical mobility

A statistical mobility function Ystat
2 for distributed exci-

tation requires averaging over a “large population of grossly

FIG. 6. Plate f2, f5 and corpus fB1� and fB1þ vs effective fcrit for nine violins,

with power-law trend line equations (fcrit in Hz).
FIG. 7. Egress filter (mass-corrected) FRAD for thick plates (min.

fcrit¼ 3.3 kHz) graduated to average (fcrit¼ 3.9 kHz) and then thin (max.

fcrit¼ 4.6 kHz).
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similar, but slightly different systems.”22 Treating all violins

as being the “same” in this average reflects the scientific

reality that easily perceived violin quality differences do not

readily show themselves in such measurements. Ystat
2

requires at least five modes per band, well satisfied by the

14-violin ensemble average in 250 Hz bands with a mini-

mum 12 modes/band over the entire frequency range, and

spatially uniform mass per unit area, attained only approxi-

mately for the spruce-maple substructures with densities

�400 to �600 kg/m3 and varying graduations. However, the

normalization and simulations of trends minimize the effect

of any such faults as only the general form of Ystat
2 is

needed. This mathematical transformation never loses the

measured dynamical quantities inherent in 1
2
MhY14

2i, choos-

ing only to express them in a different mathematical form.

Since experimental mobility-radiativity in the 1375 Hz

band was hardly affected by frock changes,3 Ystat
2—which

has no bridge filter effects—was normalized to hY14
2i—

which does—at 1375 Hz, where both should coincide. With

this normalization Ystat
2 needs only modal density n(fc),

computed over 250 Hz bands, the band-center frequency fc,

total damping ftot ! f-0.34 and M as variables,22 i.e.,

Y2
statðfcÞ /

nðfcÞ
fc � ntotðfcÞ �M2

: (10)

Updating an earlier published result23 n(fc) was computed

band-by-band up to 4 kHz for the 14-violin ensemble, and

from 4 to 5 kHz for a 5-violin subset by counting all (non-

string) modes in a band, not just those deemed strong enough

to fit. (The lowest band covered only 300–500 Hz to exclude

A0 from the B1- region, and A1 was dropped from the

count.) Over their common range these n(fc) values were

quite comparable to the vacuum-FEA results of Knott for a

fully strung-up violin with sound post.25 Our statistical

“average” (good) violin had a minimum of �2.2 modes/

band, rising to a maximum n(fc) � 4.4 modes/band near

1.1 kHz; n(fc) varied smoothly over this range and was well

parameterized by a 6th order polynomial: n(f)¼ –4.41

� 10�21 f6þ 1.18� 10�16 f5 – 1.18� 10�12 f4þ 5.71� 10�9

f3 – 1.39� 10�5 f2þ 1.54� 10�2 f – 2.18. hY14
2i and Ystat

2

(normalized at 1375 Hz) are shown in Fig. 8 (left).

Since Ystat
2 was normalized to hY14

2i¼ 3.91

� 10�4 m2/N2 and all 3-resonance fits required U¼ 1

6 0.01 as a constraint at 1375 Hz, the gatekeeper filter

retains this value at 1375 Hz throughout all calculations.

Surprisingly Ystat
2 should not change appreciably on

sound post removal—even though this dramatically degrades

violin sound and causes significant changes in mode

shapes,13 implying significant changes in the bridge feet

interaction with the corpus—because the damping exponent
and n(fc) hardly change.

2. Isolating bridge filter effects

If we define a shape function U14¼hY14
2i/Ystat

2, the

gatekeeper now becomes

1

2
MhY2

14ðfÞi ¼
UðfÞ � nðfÞ

fc � ntotðfÞ �M
: (11)

The combined behavior of n(f), f and ftot(f) creates a smooth,

near-monotonic fall off in Eq. (11). Only U clearly displays

the bridge-filter-related structure in hY14
2i, hence it is la-

beled the “shape function.” Applying the same procedure to

the average bridge foot mobility hYbf
2i in the bridge waist

trim experiment3 creates Ubf, and reveals the bridge filter

effects with even more clarity [Fig. 8(right) inset,

frock¼ 3.2 kHz].

The highest frequency peak in Ubf tracked frock changes

quite closely. This behavior was consistent with the bridge

model calculations of Woodhouse.26 Accordingly this fea-

ture was parameterized by the frock-dependent resonance

function as shown in Fig. 8(right).

The two resonance-like structures in Ubf below the frock

peak showed little dependence on frock or f2 and f5. These

were labeled as a “ring” structure near 1 kHz and a BH struc-

ture near 2.3 kHz (following Jansson and collaborators). BH

appears linked to the cutting of the slot-like f-holes,24 a dras-

tic mechanical modification in the very region most sensitive

to bridge-corpus interaction. When “structures” such as these

do not vary significantly with bridge or plate mode frequen-

cies in the severely constrained environment of the dynamic

filter model—absent physical model predictions—they must

FIG. 8. The 250 Hz band averages: (left)

hY14
2i (n) vs Ystat

2 (- - -); 1375 Hz norm.;

(right) 3-resonance parameterization of U14,

frock� 3.2 kHz, and (inset) Ubf for frock

¼ 3.2 kHz. (individual resonances: - - -, sum

(—)).
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be treated as experimentally determined “constants,” here

parameterized with two fixed-frequency resonance functions

Thus just three resonance functions—two fixed fre-

quency, one variable—parameterize Ubf quite well. Applying

the same 3-resonance parameterization to U14, with “ring”

and BH fixed in frequency and frock � 3.2 kHz, also gave

good general overall agreement as shown in Fig. 8(right).

The shape function U14 can now be used for any violin

with frock � 3.2 kHz. If frock is not known—the case for indi-

vidual violins in the 14-violin ensemble—an additional

parameterization scheme is needed to “scale” U14 to another

frock for any particular violin (as was done for the Strad copy

violin in Fig. 5). Again we turn to the Oberlin bridge experi-

ment dataset where frock was varied from 2.6 to 3.6 kHz in

0.2 kHz steps to provide the systematics needed to compute

the effect of frock changes.

3. Changing frock

We assume that �50 milligram bridge waist trims off a

�2 g bridge on a �400 g violin to drop frock from 3.6 to

2.6 kHz cannot have a significant effect on corpus mode fre-

quencies, dampings or shapes. (The “inverse mute” effect of

bridge wing-mass trims can be seen in Fig. 11 of Ref. 3.)

Thus only U can change in Eq. (11) when changing frock,

i.e., U ! U0 and hY2i ! hY02i. Applying Eq. (11) for the

new frock and dividing by the original frock Eq. (12) defines

the scaling function S(f),

SðfÞ ¼ U0

U
¼ hY

02i
hY2i ¼

hY 02bfi
hY2

bfi
; (12)

where Eq. (12) relies on the fact that for each mode the aver-

age bridge foot mobility hYbf
2i is a good relative measure of

that mode’s excitation and thus in the ratio can substitute for

the average-over-corpus hY2i. Hence the new shape function

in Eq. (11) becomes U0 ¼U � S(f) and,

1

2
MhY 0214ðfÞi ¼

UðfÞ � nðfÞ � SðfÞ
fc � ntotðfÞ �M

: (13)

[When frock is unchanged S(f)¼ 1.]

Our S(f) could be straightforwardly replaced by a simi-

lar scaling ratio from systematic theoretical calculations

such as those by Woodhouse26 (cf. Fig. 15) based on a bridge

set on flat plates with no f-holes. Unfortunately, this model

predicts scaling behavior opposite to that seen experimen-
tally both by Jansson and Niewczyk27 and in Fig. 9. Conse-

quently experimental scaling functions have been retained.

Using the fixed-violin/variable-bridge dataset Fig. 9

presents the ratio hYbfi for each frock between 2.6 and

3.6 kHz divided by hYbfi at frock¼ 3.0 kHz. Figure 9 also

includes 6th order polynomial fits used to parameterize each

ratio (all r> 0.97). Each of these polynomials squared
defines a function Frock(f; frock) for each frock (see Table I).

Hence

SðfÞ ¼ Frockðf; f0rockÞ
Frockðf; frockÞ

; (14)

where the prime is always for the final frock.

It is apparent from Fig. 9 that frock changes primarily

affect the mobility profile near frock. The great diminution in

hYbfi seen in this region as frock decreases was seen previ-

ously in 1999 by Jansson and Niewczyk,27 who dropped frock

to 1.5 kHz, far below our cautious limit for possible bridge

waist failure in playing-listening tests.

The mid-frequency 1–2 kHz region was hardly affected

by frock changes, with essentially no variation at 1375 Hz,

our normalization point for Ystat
2. Larger, but still small

compared to the frock region, are the changes in the lowest

two bands dominated by B1– and B1þ.

Signature mode bridge vibrations show nominally rigid

body rocking behavior; near frock the bridge feet hardly

move while the bridge top shows a complex “wiggle-rock.”3

Above about 5000 Hz bridge tuning effects appear to

diminish.

FIG. 9. hYbfi (norm. to 3.0 kHz data) for frock¼ 2.6 and 2.8 kHz (3); 3.2

and 3.4 kHz (32), and 3.6 kHz (1) with 6th order polynomial fits.

TABLE I. Frock polynomials (2600 Hz	 frock	 3600 Hz).

frock Frock (fit range 400–5000 Hz, except as noted)

2600a [3.774� 10�21f6� 6.618� 10�17f5þ 4.372� 10�13f4� 1.338� 10�9f3þ 1.845� 10�6f2� 9.856� 10�4fþ 1.102]2

2800 [�6.492� 10�22f6þ 1.134� 10�17f5� 6.637� 10�14f4þ 1.567� 10�10f3� 1.535� 10�7f2þ 8.889� 10�5fþ 0.955]2

3000 1

3200 [�2.010� 10�21f6þ 3.007� 10�17f5� 1.819� 10�13f4þ 5.575� 10�10f3� 8.545� 10�7f2þ 6.092� 10�4fþ 0.843]2

3400a [3.416� 10�21f6� 5.679� 10�17f5þ 3.502� 10�13f4� 1.020� 10�9f3þ 1.539� 10�6f2� 1.191� 10�3fþ 1.399]2

3600 [�9.279� 10�21f6þ 1.381� 10�16f5� 7.962� 10�13f4þ 2.235� 10�9f3� 3.059� 10�6f2þ 1.756� 10�3fþ 0.764]2

aFit range 400–6000 Hz.
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C. Statistical region dynamic filter equation

Combining the gatekeeper from Eq. (13) and egress

from Eq. (9) and cancelling terms gives the ultimate form of

the statistical region radiativity profile

hR2ðfÞi / UðfÞ � nðfÞ � SðfÞ
M

FRADðfÞ; (15)

[A useful nominal value for Eq. (15) would be hR2i � 0.15

Pa2/N2 (average violin) at r¼ 1.2 m and 1375 Hz, a value

unaffected by frock changes.]

In statistical terms modal density is the least variable

term in Eq. (15), hardly affected by plate tuning or sound

post removal. Plate tuning over the limited range of our ex-

perimental dataset could be expected to affect the shape

function somewhat, as could the shape, size and placement

of the f-holes in the “bridge island.”

In the context of the dynamic filter model the egress fil-

ter is now just FRAD, computed from the radiation-total

damping ratio that collects all the damping—energy loss—

properties of the violin into one dimensionless term. The

gatekeeper in the statistical region depends on the product of

the shape function, modal density, and scaling function,

where S(f)¼ 1 if bridge tuning is unchanged. To compute

the statistical region skeleton radiativity profile for the well-

known Strad copy violin in Fig. 5, FRAD was computed for

experimental fcrit � 4.2 kHz, while U(f) and n(f) in Eq. (15)

were taken directly from the 14-violin ensemble results with

bad violin mass M¼ 0.41 kg. The only variable in Eq. (15)

was S(f). Varying Frock (using functions in Table I) for the

best overall fit gave frock � 2.8 kHz.

1. Statistical model general systematics

In 1946 Frederick Saunders summarized decades of

research by remarking that eminent violinists looked for two

main qualities in a violin: “first, great power, and second, an

even distribution of strength among all ranges of frequency,

the lowest octave being of special importance.”28 Does Eq.

(15) offer any quantitative insights into the most general

aspects of these judgments?

The “even distribution of strength” reflected in the rela-

tively smooth radiativity profile of our three old-Italian vio-

lins vs three bad ones10 was consistent with this summary

statement. The BH was the highest radiativity peak for the

bad and average (good) violin and its origin—likely from

cutting f-holes—suggests examining the bridge feet-corpus

interface, since bridge waist trims hardly affect it. (Typical

maintenance-repairs on old violin top plates near the bridge

feet could easily affect this interface.)

The desirable “great power” can be approached from a

number of perspectives, including perceptual ones:

(1) Maximize FRAD—violins need only minimize internal and

support fixture damping to become more “powerful,” yet

too little damping has an adverse effect on violin sound.

(2) Reduce total mass M—unsurprising given Newton’s 2nd

Law. M for the three old Italian violins in our dataset

was �10% lower than for the bad violins.

(3) Increase n(fc)—reduced plate mass reduces mode fre-

quencies and their separation, thus increasing n(fc) and
reducing M. But the drop in B1 frequencies points to

more RA0 and a corresponding increase in fcrit, implying

a relatively weaker mid-frequency response overall.

(4) Increase n(fc)—by adding small substructures whose

modes are then subsumed into the whole. Possibly mode

frequencies could add to n(fc) in or near a region where

emphasis is desired? Of course added mass from small

substructures that do not radiate effectively might divert

string vibration energy to create no net advantage.

(5) Psychoacoustics—in an auditorium where typical rever-

beration boosts the low and rolls off the high frequen-

cies, perhaps concentrating sound in the 2–4 kHz range

where the ear’s sensitivity is greatest via a convergence

of frock and fcrit could provide audible perceptual

dividends?

Desirable strength in the “lowest octave” tends to single

out A0 and thus how well corpus motions excite it. Later

simulations that combine the deterministic and statistical

regions utilize Eq. (15) to provide important trend informa-

tion on A0 excitation due to plate and bridge tuning using

the empirical plate modes!B1 relationship.

D. Plate modes to B1 modes

Violinmakers have generally neglected the effect of

ribs—normally chosen to satisfy esthetic or cosmetic con-

cerns—on violin dynamics even though they certainly knew

not to make them too thick or thin. Schelleng for example

thought only their mass was important in his octet scaling.6

Normally, gluing free plates to the ribs should dramatically

alter their mode shapes due to major boundary condition

changes. In the unruly context of violin research the happy

coincidence of the B1 nodal line patterns resembling those

of plate modes #2 and #5 flipping between top and back

could not be ignored.

In 1996 Schleske demonstrated that tuning plates over a

wide range of frequencies had a relatively small effect on B1

frequencies,20 a result that seemingly undermined any ra-

tionale for plate tuning other than possibly manufacturing

consistency, but did not keep violinmakers from tuning

plates. However an unorthodox view—B1 bending mode

stiffness was dominated by rib (not plate) stiffness common

to both modes—led to a heuristic flat-plate model incorpo-

rating rib stiffness that maintained (actually required) ortho-

tropic wood plates.4 (The physical argument underlying the

model, reduced to its essentials, was that bending a plate in a

particular way reveals a certain stiffness, irrespective of the
frequency of bending.)

Taking the rib stiffness contribution to the 1st corpus

bending modes as the same for each B1 in the model implies

that subtracting B1 frequencies, fB1þ� fB1�¼DB1, approxi-

mately cancels rib stiffness, leaving mainly plate stiffness

parameterized by the plate mode frequency difference,

f5� f2¼D52, to dominate DB1, resulting in the empirical

trend line equation DB1¼ (0.034�D52)2.38. Another simple

trend line equation, fB1þ/fB1�¼2.32� 10�3�DB1þ 0.988,
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was generated from fB1þ /fB1�vs DB1, with limits fB1þ/fB1�

! 1 as DB1! 0.

Since fB1�¼DB1/(fB1þ /fB1� – 1) and fB1þ¼ fB1�

þDB1, both B1 frequencies can be predicted from f2 and f5,

typically within 63% for our dataset. Remaining inside the

limits of our database, a simple mathematical chain exists to

start anywhere in the chain, using f2,f5 $ fB1 and f5 $ fcrit,

to simulate skeleton radiativity profiles for a certain frock.

V. DYNAMIC FILTER MODEL SIMULATIONS

These first skeleton radiativity profile simulations will

be limited to the range of experimental parameters in the

database, using only the minimum-average-maximum values

for plate and bridge tuning.

All simulations used 14-violin-averages: 275 Hz, 2.5 %crit

and 469 Hz, 1.0 %crit, for A0 and A1, resp. For B1: fB1�

¼ 470 Hz, hRB1�i¼ 1.01 Pa/N, fB1�¼ 1.22 %crit; fB1þ

¼ 541 Hz, hRB1þi¼ 0.95 Pa/N, fB1þ¼ 1.15 %crit.

A. Effect of bridge tuning on hR2(f)i: fcrit fixed

The effect of stepping frock from 2.6 to 3.0 to 3.4 kHz on

the computed dynamic filter radiativity profile RDF
2 was simu-

lated for fcrit fixed at our average 3.9 kHz. Choosing a value for

fcrit sets f2, f5, fB1�, fB1þ using the mathematical chain devel-

oped earlier. Although our average frock was 3.2 kHz the fixed
fcrit/variable frock simulations used an “average” frock¼ 3.0 kHz

to take advantage of the 6 kHz maximum frequency for the

3.0, 2.6 and 3.4 kHz data sets. The 3.4 kHz simulation was also

chosen rather than 3.6 kHz maximum frock because it had simi-

lar behavior and a wider frequency range. The effect of frock

changes on the B1 modes was also incorporated into the dual-

Helmholtz calculations for these simulations, with B1 radiativ-

ity changes mirroring those shown for A0.

The simulation results are shown in Fig. 10(top). Also

note the introduction of “robust” qualitative descriptors

“warm, full,” “nasal,” “bright, clear,” and “harsh” for violin

sound29,30 superimposed on their respective frequency

ranges in these plots. These terms serve as a guide to judge

qualitative trends in sound related to radiativity profile
trends as frock was varied.

B. Effect of plate tuning on hR2(f)i: fcrit changed

Changing fcrit is more complicated than changing frock

since f2, f5, and fB1�, fB1þ must also change. The fcrit choices,

stepped from 3.3 to 3.9 to 4.6 kHz (our minimum, average,

and maximum values, resp.) create the fixed frock/variable
fcrit curves shown in Fig. 10(bottom) using the 14-violin

gatekeeper filter from Eq. (13) and frock � 3.2 kHz.

Comparing curves for minimum-to-maximum frock with

minimum-to-maximum fcrit it is apparent from Fig. 10 that

the gatekeeper is a much stronger filter than the egress, and

(b) the major effect of frock and fcrit lies above the BH peak

between �3 and �5 kHz, falling where the ear is most

sensitive.

VI. CONCLUSIONS

Violin acoustics suffers from limitations akin to the pris-

oners in Plato’s allegory who see “reality” in the form of

shadows cast by people and objects on the walls of the cave.

We cannot capture the violinist’s bone conductionþnear-

field ear, the tactile embrace of the instrument or the perso-

nal auditory processing system. Yet that is mostly irrelevant

to this dynamic filter model, which asks—and provides

somewhat imperfect answers to—only questions about how

modifying plate mode and/or bridge rocking frequencies will

affect the radiativity profile, thereby giving makers some

sense of how each affects the sound.

The model exposes some of the seemingly conflicting

underpinnings of plate-bridge tuning, viz., tuning plate

modes at the low frequency end also affects the high fre-

quency end of the radiativity profile through the link to the

FIG. 10. Dynamic filter skeleton radiativity profile RDF
2 (all same scale):

(top) fixed violin/variable bridge fcrit¼ 3.9 kHz, frock stepped 2.6–3.0–3.4 kHz

(fA0, fB1�, fB1þ VIOCADEAS averages). (bottom) Variable violin/fixed bridge

for frock¼ 3.2 kHz, fcrit stepped 3.3–3.9–4.6 kHz. (Shaded curves represent

average “good” violin starting results; arrows link frock,fcrit changes to RA0.)
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critical frequency. Conversely tuning the bridge rocking

mode at the high frequency end affects low frequency signa-

ture mode radiativity. Thus if the plates are a bit thick, rais-

ing the B1 frequencies and lowering fcrit, applying a

“countervailing” bridge tuning—raised frock—might very

well be able to compensate. Conversely, too-thin plates

could be compensated for by lowering frock.
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