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This is the edited text of the Klopsteg Lecture delivered to the Summer Meeting of the AAPT
on August 13, 1992. It sketches the current state of knowledge about the violin—at least as seen
by the author-—in two parts, Physics of the Bowed String and The Violin as a Radiator of Sound,
punctuated by a number of “meditations” about the nature of scientific knowledge.

I. FIRST MEDITATION

If we want to ask ourselves what exactly it means to
“apply physics” to a problem, we need to keep in mind that
physics is rather different from the other sciences because,
unlike them, it is not defined primarily by its subject mat-
ter. So, for example, we would agree that a problem validly
belongs to biology if it deals with living things, or to geol-
ogy if it deals with rocks, but no corresponding definition
exists for physics. Instead, physics is delineated, not by its
subject matter, but by the methods of thought that a phys-
icist uses. :

Take, for example, the case of the weather, whose pre-
diction obviously involves thermodynamics, aerodynamics,
electrodynamics, mechanics: by any definition based on
subject matter, it would certainly qualify as physics. Yet
until fairly recently—specifically, until the advent of
weather satellites, massive daily balloon launchings, and
great monstrous supercomputers—physicists did not in-
volve themselves much with the weather for one very sim-
ple reason: the problem was too hard. Put more soberly,
the methods that physics uses were unable to make any
headway. Faced with this kind of a situation, physicists
simply pronounced weather prediction as “not physics.”

In fact, one can view the whole history of science—
beginning with Greek attempts at “rational” descriptions
of natural phenomena, up through medieval theological
speculations, the birth of what was called “natural philos-
ophy,” and finally the physics that we know today—as a
gradual culling away of subject matter that did not fruit-
fully yield to that particular style of analysis; in this pro-
gression, physics is nothing other than that part of human
speculation which remained. It is not that other subjects,
such as philosophy and theology, are less interesting or
exciting—in some ways they may be more so—but that
progress in those areas must be attempted by other meth-
ods.

That is why it often strikes us as so pathetic when new-
comers, such as those who work in the fields that we have
come to call the “social sciences,” come along and say,
“Look: these methods have been so successful for the phys-
icists; let us apply them to our own areas of interest and see
whether we could not attain similar successes.” To a phys-
icist, that is going backwards. A physicist says: “We have
been there earlier in our history, and we found that it does
not work.”

But I still have not told you what “good physics™ is, and
particularly not in a way that would define what one might
mean by “good violin physics.” That is a point to which we
will need to return.
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I1. PHYSICS OF THE BOWED STRING

A, Sticking and slipping

For purposes of physical understanding, we can visualize
the complete violin, as sketched in the top part of Fig. 1,
decomposed into two sections according to the scheme
shown in the bottom part of the same figure. The section
on the left consists of the strings, whose vibrating length is
defined at one end by the bridge, on the other by the “nut;”
they are held under carefully tuned tension between the
tailpiece at one end and the pegs at the other. The strings
(or, more exactly, the string which is being played at a
given moment) is put into vibration by the action of the
bow, which exerts a force on it. The other section of the
violin, as we conceptualize it, consists of the wooden shell
plus the enclosed air. The vibrations of the string are trans-
mitted to this second section via the bridge; in turn, the
shell and enclosed air interact with the sound medium rep-
resented by the surrounding air, so that sound waves are
sent out from the instrument. In this first part of the pre-
sentation we will outline some aspects of the physics of the
interaction between the bow and the strings, that is, the
process that is responsible for putting the left section of
Fig. 1 into vibration.

When a physicist contemplates such a process,. the first
question that naturally arises is: How is the rectilinear mo-
tion of the bow converted into oscillatory motion of the
string? Many people will consider that question answered
by saying that we are dealing with a “stick-slip oscilla-
tion:” the vibration of the string is driven by the fact that
it first sticks to the bow, moving, in other words, along
with it; but when the force between the two exceeds some
kind of frictional limit it “lets go> and slips in the opposite
direction, finally being grabbed by the bow once more.
These two régimes, the sticking régime and the slipping
régime, alternate, so that each complete period of oscilla-
tion contains first one, then the other.

Yet a little thought will reveal that such a description
omits some important features, as we can see by contem-
plating the simple stick-slip system shown in Fig. 2. Here a
rough-surfaced conveyor belt is imagined to be moving on
two pulleys with constant speed v, and a mass m, con-
nected to a fixed wall with a spring of force constant k, is
placed on top. We can make our model especially simple,
without sacrificing any of its important properties, by call-
ing the maximum force of static friction F;, and imagining
that the force of sliding friction vanishes altogether. The
mass will then be dragged along by the conveyor belt until
the displacement is equal to Fy/k, whereupon it will let go;
subsequently (since we assume the force of sliding friction

© 1993 American Association of Physics Teachers 1067



FORCE
OF BOW
ON STRING

FORCE
OF STRING
ON BRIDGE

Fig. 1. For purposes of our discussion, the complete violin (top) is con-
ceptually decomposed into strings (on the left) and body (on the right).
The strings are held under tension between the pegs at the top and the
triangular “tailpiece” at the bottom; their vibrating length is defined by
the nut (or else the player’s finger) and the bridge, and they are set into
vibration by forces exerted by the bow. The bridge, in turn, shown in both
parts of the violin, exerts forces on the wooden shell of the violin and,
more indirectly, on the enclosed air.

to vanish) its motion will be that of a free oscillator, whose
initial conditions are to have a displacement Fy/k and a
velocity v,. Such a motion is, of course, sinusoidal in time,
and will continue until the velocity of the mass again
matches that of the conveyor belt, when it will be “recap-
tured” and the cycle will repeat.

A simple calculation shows that the pattern of the re-
sulting motion will depend on a parameter which we can
call the coupling constant and represent by I'. It is defined
as the ratio

Fy/k

=V0/‘00’

Fig. 2. A prototypical stick-slip oscillator: a mass m is dragged along
toward the right by a conveyor belt moving with speed v; while attached
to a fixed wall by a spring of force constant k. This type of system is,
however, a very poor model for a bowed string.
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Fig. 3. Displacement as a function of time of the system of Fig. 2 for
various values of the coupling constant I'. The time axis spans exactly
four periods of the harmonic oscillator if it were sliding on a frictionless
surface. The decrease of actual frequency of oscillation with increasing T,
mild for small I, becomes enormous when that parameter exceeds 1.

where the fraction in the numerator is the displacement at
which the mass lets go of the conveyor belt, and the one in
the denominator is the displacement amplitude with which
the corresponding free oscillator would have to vibrate so
as to have a velocity amplitude of v, (here wy is the radian
frequency of the free oscillator). The motions of this sys-
tem for a few possible values of I are shown in Fig. 3; in
this case I is varied by keeping &, vy, and @, constant and
changing F,. Clearly, the value of the coupling constant
determines the “duty cycle,” or the respective fractions of
the period occupied by the sticking and slipping régimes;
the larger I' is, the smaller the relative time spent in “free”
vibration. It is also clear from the figure (as can, of course,
be calculated in explicit algebraic terms) that the overall
period will vary with I'; this variation is weak for small T’
but becomes quite strong for large I'.

Now it is a very simple exercise to match the parameters
of such a model to the typical conditions of a bowed violin
string, with the result that I" is by no means small (values
in the range of 10 are entirely reasonable); at the same
time, we know that the frequency with which such a bowed
string oscillates is very accurately the same as the free
string would have (and which is easily observed if we
pluck the string instead of bowing it). Musically, this fact
is extremely important. You may be aware that the fre-
quency of a vibration determines the pitch of the musical
note which is perceived, and that the interval of a semitone,
e.g., from C to C#, represents a frequency change of less
than 6%, so that a shift of even a fraction of 1% would, by
musical standards, constitute an outrageous error in into-
nation. We conclude that the model of Fig. 2 cannot, at
face value at least, be applied to the mechanism by which
the bow interacts with the string.

Although we will find it advantageous to approach our
modeling from a different direction, it may nonetheless be
interesting to remark what, exactly, went wrong in the case
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Fig. 4. Helmholtz’s “vibration microscope,” from an illustration in his
book Die Tonempfindungen (Sensations of Tone) first published in 1862.

we are considering. It turns out that an absolutely crucial
property of the stretched string, as it appears in this con-
text, is that it has not one but many proper frequencies,
and that these proper frequencies are harmonic—that is,
integer multiples of the lowest one. In other words, it is
necessary to consider the string not as a single harmonic
oscillator but as a collection of them; or, equivalently, as a
continuous medium having not one, but an infinity of de-
grees of freedom.

B. Helmholtz motion

Historically, the first physicist to do a serious, quantita-
tive study of bowed-string motion was Helmholtz, working
in the second half of the last century. The nature of his
apparatus is pictured in Fig. 4, reproduced from his book
which was first published in 1862. Not shown in this dia-
gram is the violin itself, which is held vertically (like a
cello); affixed to some point of the string is a small grain of
starch, which is illuminated by a strong light. It is the
resulting very bright small white spot that is observed
through the vibration microscope which the figure depicts.
It consists of a microscope whose objective lens is attached
to one prong of a tuning fork; this tuning fork is electrically
driven (by a mechanism like that of an electric buzzer) so
that it vibrates sinusoidally along a vertical line segment at
the same time that the grain of starch, attached to the
string, is vibrating horizontally. What is seen by an ob-
server looking through the microscope is, accordingly, a
two-dimensional curve which, if the frequency of the tun-
ing fork is related to that of the string by a ratio of small
integers, will have the character of a stationary (or almost
stationary) Lissajous figure. In a way, this device can be
considered a precursor of our modern oscilloscope, except
that the sweep (which is here vertical) has a sinusoidal
wave form instead of the more modern sawtooth; as a re-
sult, considerable interpretation is required to obtain from
the observed luminous curves an actual picture of the dis-
placement of the string as a function of time.
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Fig. 5. Helmholtz motion of a violin string depicted as an imagined
multiple exposure from a violinist’s-eye point of view. In this perspective
sketch, the bridge is the nearest point, and the positions of the string at
various instants, all of which lie in a horizontal plane, are shown at the
same time. The violinist’s bow is imagined as moving (to the right) along
the dotted line. Also shown, in the form of a dashed line, is the curve that
would be drawn by the string if a vertical sheet of magic recording paper
moved upward through the bow line without affecting the string’s motion.
On this record, time would run downward (because the paper is moving
upward), and the displacement of the string would appear as an asym-
metric triangular wave sometimes called a “sawtooth.”

The conclusion which Helmholtz reached, on the basis
of meticulous observations at a number of places on the
string, is that the bowed string is executing Helmholtz mo-
tion, as we call it today; and although the intervening one
and a third centuries have considerably refined our knowl-
edge of the phenomenon, its essential nature is still ac-
knowledged to be as Helmholtz described it. In ‘“‘ideal”
Helmholtz motion, which can be shown to be a possible
motion for an infinitely flexible free string without any
energy dissipation, the string takes the form, at each in-
stant of time, of two straight-line sections joined by a cor-
ner or “kink;” as time progresses, the kink moves along a
parabolic path from one fixed end of the string to the other
and then returns on the opposite side, this motion of the
kink taking place at the speed of transverse waves in the
string. Thus the round-trip time of the kink, which is 2L/c
(L being the length of the string and ¢ the wave speed), is
the time after which everything repeats—that is, it is the
period of the Helmholtz motion. We note that, according
to elementary physics, this is exactly equal to the frequency
of the fundamental normal vibration of the string, all other
normal modes having frequencies which are integer multi-
ples of this fundamental one. As a result, any free motion
at all (e.g., the motion which results when the string is
plucked), being a superposition of normal modes each vi-
brating with its own frequency, will have that same period
of 2L/c (since the passage of that amount of time will
allow each mode to have gone through an integer number
of its own proper periods, causing the overall motion to
start from the beginning).

Figure 5 depicts the Helmholtz motion as an imagined
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Fig. 6. Hypothetical characteristic giving the force between the bow hairs
and the string as a function of their relative velocity. The vertical section
represents sticking: at zero relative velocity, any force between a negative
and a positive limit is possible. The curved sections represent slipping: as
the relative velocity grows, the frictional force decreases. In Helmholtz
motion, the string alternates between the operating points P and Q, which
must lie on the same horizontal line.

multiple exposure from a violinist‘s-eye view. Shown also,
in the form of a dashed line, is the motion of one point in
the string, graphed as displacement (horizontal) vs time
(vertical). We see that this displacement also consists of
straight-line sections, that is, constant-velocity sections,
corresponding in alternation to the time during which the
kink moves from the observation point to one end of the
string and returns, and to the round trip in the other di-
rection. If the observation point coincides with the bowing
point, it will be useful (as we shall see in a minute) to
interpret those two sections as the “sticking” and “slip-
ping” parts of the cycle, but it is important to understand
that, for ideal Helmholtz motion, the same type of
displacement-time curve would be observed at each point
of the string. What is different among different points is the
duty cycle and the two corresponding velocities: at each
point, the duty cycle, or fractional time spent moving in
each of the two direction, is determined as the fractional
position of that point along the string measured from each
of the endpoints; and the two constant velocities must, of
course, be in inverse proportion to those fractions, since
the overall displacement in the course of a period must be
equal to zero.

Although it may feel comforting, in this way, to have
discerned why the sticking and slipping parts of the cycle
each have a constant velocity, and why the frequency of
motion is (unlike the oversimplified model of Sec. I A!)
independent of any ‘“coupling constant,” this “discern-
ment” must still, at this point, be viewed as illusory, since
all we have stated so far is that the Helmholtz motion is a
possible motion of the free string without damping and
without external forces applied. But in fact, of course, the
bow does exert a force, according to some frictional char-
acteristic such as is sketched in Fig. 6. Here the force
exerted by the bow on the string (or, more correctly, the
force exerted by the string on the bow; the other is, by
Newton’s Third Law, the exact negative of it) is shown as
a function of the velocity of the string relative to the bow
hair. Typical of this characteristic is that at very low rela-
tive velocities the force rises to comparatively high values;
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the graph shows this initial large slope as infinite, that is, it
depicts the corresponding part of the curve as a vertical
segment. When the situation is such as to place the actual
operating point on this segment, we describe it as a “stick-
ing condition,” that is, one in which the relative velocity of
the string and bow is zero or nearly zero. As the relative
velocity increases away from zero, the frictional force is
shown as decreasing again; these are the points that corre-
spond to a slipping condition, in which the velocities of the
string and bow hair can differ as much as they wish.

A moment’s thought will reveal why a frictional char-
acteristic of this general type, in which slipping (or “slid-
ing”) friction is less than sticking (or “static”) friction, is
necessary for Helmholtz motion to be possible. If we de-
scribe the sticking and slipping parts of the motion by a
pair of “operating” points on the graphs, such as P and Q
in Fig. 6, the two must lie on a horizontal line, that is, they
must correspond to forces which are equal both in magni-
tude and in direction; otherwise, since the distances which
the string covers in the two directions are equal (otherwise
there would be a net displacement in the course of a period,
which is nonsense), the work done by the bow in the stick-
ing section would not be cancelled exactly by the negative
work done in the slipping section. This would imply that
the bow transfers a net amount of energy to the string in
the course of a period, which is impossible if there is no
dissipation (as we have assumed) and a steady motion has
been attained. But it is clear that two separate intersection
points for which the force is the same can exist only if the
curve increases to a maximum and then decreases again.

As you are probably aware, a frictional characteristic
that comprises separate sticking and slipping régimes, with
the force larger in the former than in the latter, is generally
typical of what we call dry friction. So, for example, if there
is a large crate on the floor and you lean on it in an attempt
to make it move, you find that up to a certain point it
remains oblivious to your effort; but once the motion be-
gins, the same force exerted by your leaning on it can be
sufficient to produce considerable acceleration, perhaps
enough to make you fall on your face if you are not careful.
By contrast, what we call wet, or lubricated, friction is a
situation in which the frictional force increases monotoni-
cally from being zero at zero velocity. This latter situation
is exemplified by standing on a dock next to a large boat
which is not properly tied up. If you lean on the boat ever
so slightly, it will begin to creep away, albeit very slowly;
so that if you are not paying attention you can once more
end up in an embarrassing situation. In the case of violin
bow hair, a slight layer of oil, such as your little brother or
sister might put on it by touching it with greasy paws, will
be enough to make it useless for obtaining a sound.

What, then, would be the motion of a violin string, still
considered dissipationless, under the action of a bow?
Clearly, the “pure” Helmholtz motion is no longer possi-
ble, since it is a solution of the equations of motion with no
force applied; yet the correct answer is actually quite sim-
ple since, as we have proved, the forces exerted by the bow
during slipping and during sticking are identical. The sit-
uation is, accordingly, that of a string which is free except
for an absolutely constant force applied at one point. If
nothing else were happening, such an absolutely constant
force would (like a localized weight hung from a clothes-
line) produce a string with a stationary kink at the location
of the bow. Superposing the two solutions, one a solution
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of the homogeneous (that is, free) equation of motion, the
other a “particular integral” of the inhomogenous one, we
conclude that a possible motion of the dissipationless
bowed string is the classic circulating kink of the Helm-
holtz motion plus a second, stationary kink at the position
of the bow. It is this combination that is today considered
as the basic motion of a bowed string.

C. Uniqueness and stability

The foregoing approach at best establishes that the
Helmbholtz motion, as experimentally observed, is possible.
It does not give any grounds for believing that it is the only
one possible; nor does it bring any evidence to show why,
if other motions are possible, the Helmholtz motion is
stable—that is, continues to be executed once it is begun.

With regard to the first point, the answer is clearly re-
vealed by handing a violin and a bow to a novice and
requesting that an attempt be made to play the instrument.
We all know from painful experience that the resulting
assortment of screeches, squeaks, and squawks is certainly
not the regular and periodic motion that we have been
discussing; in other words, the Helmholtz motion does not
have any physical uniqueness. In fact, this simple observa-
tion illustrates a rather important danger associated with
doing physics on a system which has been chosen for study
on the basis of other, essentially extraneous, reasons, and
that is to confuse the universe of musical possibilities with
the universe of physical possibilites.

As regards the stability of Helmholtz motion, the situa-
tion is more complicated. Experimentally, of course, we
know that it is stable, in that a violinist, having once begun
a note, is able to continue it by simply drawing the bow
smoothly across that string, in spite of the fact that infin-
itesimal perturbations must always be arising. In fact, to
describe a motion as “stable” is synonymous with saying
that, as a result of the appropriate laws of dynamics, any
infinitesimal perturbation which does arise subsequently
decays back toward insignificance rather than growing.

Unfortunately, when we try to apply this kind of logic to
the ideal Helmholtz motion, we reach the embarrassing
conclusion that theoretically, the Helmholtz motion is al-
ways unstable. This conclusion follows, in fact, directly
from an examination of the frictional characteristic of Fig.
6, where this motion is described as one that jumps back
and forth between the two operating points, namely the
sticking point P and the slipping point Q. Now if an infin-
itesimal disturbance is superimposed, it is easily seen that,
since the slope of the curve at Q is negative, an increase of
velocity will be accompanied by a decrease of force; differ-
entially, this is the condition we describe as a “negative
resistance,” whose property is to feed energy into the per-
turbation rather than dissipating it. On the other hand, the
sticking point P has an infinite slope, which- (like a rigid
wall) corresponds to an “infinite resistance;” it means that
any perturbation will be reflected from it with no change in
energy. Thus the only two possibilities—depending on de-
tails of form and phase—are for the perturbation to gain
energy or to remain unchanged, so that the interaction of
the perturbation with the bow must, on the average, cause
it to grow.

Faced with a situation in which experiment and theory
clearly contradict each other, we are forced to consider
what factors in the real situation our model has ignored;
there is, in fact, no shortage of these, including: imperfect
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reflection at the end supports; finite width of the bow; pres-
ence of torsional string motion in addition to transverse
motion; and some others, none of which I can reasonably
go into as part of this talk. Suffice it to say that the problem
of stability of Helmholtz motion remains one in which
active research is continuing.

D. Computer simulation

Computer simulation as a method of research lies in
some ways in between theory and experiment; in other
ways it represents a completely new type of research activ-
ity, made possible only relatively recently by the develop-
ment of computers whose great speed and enormous mem-
ory allow them not merely to do things faster than we
could otherwise but to engage in projects which would
normally be considered totally impossible, in the sense that
to attempt an equivalent calculation “by hand” would not
merely take much longer than any researcher’s lifetime but
might well exceed the expected lifetime of our civilization
as a whole. In doing a computer simulation of a bowed
string, we must have, or at least think we have, a theoret-
ical picture of the underlying mechanics; but instead of
then attempting to solve analytically the very complex
nonlinear coupled partial differential equations, we take, so
to speak, “the point of view of the string itself,” in that we
assign to it appropriate initial conditions and then allow its
time development to proceed incrementally from one mo-
ment to the next, these moments being spaced sufficiently
closely in time to approximate the continuous behavior of
what actually occurs.

One such program which I developed ten years ago I
named VIOLUNIX, since that was my first experience
with the UNIX operating system. Its details are not im-
portant, especially as considerable work has been done in
this area since; but the general scheme is for the computer
to store two arrays, signifying the two waves which exist
simultaneously on the string, one propagating in each di-
rection. When the time advances by one unit, the arrays
advance, their leading elements being “reflected” at the
corresponding string ends (of which one stands for the
bridge of the violin and the other for the violinist’s finger)
by being transferred to the other array. (In this case it is
not necessary to assume that no dissipation exists at the
supports, since a reflection coefficient smaller than unity is
easily incorporated.) Finally, the program identifies three
contiguous string locations as the places where the bow,
taken to consist of three bow hairs, applies its forces, thus
modifying the string’s motion. These forces are computed
from the corresponding string particle’s instantaneous
transverse velocity with the aid of a ““frictional character-
istic” to which the computer has access in the form of a
table lookup, and which is programmed to correspond to
whatever form the researcher has in mind (such as, e.g.,
the one of Fig. 6). By letting this computation proceed, we
not only get a picture of the finally attained steady motion,
but can equally well, and without distinction, study the
various transient phenomena that occur.

We show in Fig. 7 (top curve) the string motion com-
puted by VIOLUNIX for the situation in which the bow
starts at rest and accelerates uniformly to a maximum
speed; we see how at first the string merely deflects, then
breaks into oscillation. As seen in the expanded view of this
transient section (bottom curve of Fig. 7), it does not take
long before rather good Helmholtz motion, as signified by
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Fig. 7. String behavior computed by the program VIOLUNIX; what is
plotted is the slope of the string at an endpoint, which translates into
transverse force exerted on the bridge, as a function of time. The string is
tuned to 500 Hz, and the upper graph represents a time interval of 200
ms; the bow is assumed to start from rest and gain speed linearly with
time. The smaller interval extending from 86 to 120 ms (indicated by the
arrows over the top graph) is shown expanded in the lower graph.

the sawtooth behavior, is established—and we must keep
in mind that Helmholtz motion was in no explicit way
programmed into this. But we also notice that the initial
oscillation, although resembling a sawtooth shape, is tak-
ing place at twice the frequency of the string—that is, the
bow is exciting not the fundamental but the second har-
monic; after just a few cycles the fundamental makes its
appearance and quickly takes over. This phenomenon is
actually rather familiar; when one listens to it, one recog-
nizes it immediately as what we normally call “a squeak.”
In fact, my experience listening to these “synthesized”
sounds made it painfully obvious that in programming the
computer simulation I had programmed the violin but had
made no attempt to program the violinist! As a result, my
first attempts sounded very much like a more or less nor-
mal violin being played by a four year old.

III. SECOND MEDITATION

At the end of what we called our “First Meditation,” I
left you with something of a puzzle: what is it about an
investigation into the behavior of a violin which makes it,
or fails to make it, “good physics?” In fact, as I understand
it, the criterion is simple: If you have been enjoying the
discussion I have been presenting to you, then it is good
physics; in other words, it is the reaction of professional
physicists that determines the quality of physics research.
To many people, such a subjective criterion appears terri-
bly- undependable and frivolous, but (as I see it) what
makes it not at all frivolous is precisely the fact that it is so
utterly dependable; that is, that the judgment of profes-
sional physicists with regard to whether something is, or is
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not, good physics is so very consistent that it must be
viewed as properly defining a real underlying objective
quality.

Unfortunately, this kind of reasoning is terribly difficult
to explain to an outsider, which accounts for the enormous
misunderstandings about the nature of science that char-
acterize our broader culture, and which are constantly
propagated and reinforced by those in the media whose job
it is to cover scientific subjects. Because of the general
assumption that science is directed toward practical ends,
people are always asking me: have you discovered the Se-
cret of Stradivarius yet? And if not, what exactly is your
research good for?

To understand why such questions tend always to miss
the mark, it may be helpful to clarify the important dis-
tinction between a violin maker and a violin physicist (a
difference that does not, by the way, preclude the same
person engaging in both activities). The distinction is very
simple. A violin maker’s aim is to produce a better violin,
and if in the process he obtains some scientific insights,
that is gravy; whereas to the violin physicist, the situation
is reversed. Although I, a violin physicist, have perennial
secret dreams of discovering an important breakthrough in
the process of violin manufacture—and the commonly
used phrase “Secret of Stradivarius” is nothing but a met-
aphor for such a discovery—that is not the criterion by
which I judge my success or failure which is, rather, de-
termined by the reactions I get from an otherwise uncom-
mitted audience at a physics colloquium (or, what is
closely related, the peer reviews of research proposals
which I submit to the National Science Foundation).

Sadly, violin physics has acquired something of a bad
reputation among violin makers because of the way its
nature has been misrepresented, often by the physicists
themselves. That is why you often get comments from
highly talented makers to the effect that “scientific meth-
ods are not of much use—I tried them and they did not
help at all.” Usually, what is hiding behind such a state-
ment are two basic misunderstandings: first, that “scientific
methods” means having a lot of oscilloscopes and audio
oscillators and spectrum analyzers sitting around one’s
workshop; second, that science claims to provide effective
methods for good violin building, which in fact it does not.

IV. THE VIOLIN AS A RADIATOR OF SOUND

A. Static and dynamic response

It is a commonplace that a vibrating string, interacting
directly with the air around it, will radiate only an infini-
tesimal amount of sound, so that the understanding of the
violin as a musical instrument must involve the discussion
of the rest of it—the part other than the string itself—in
the process of radiation. What we are talking about is, of
course, the wooden shell of the instrument, as well as the
air enclosed inside that shell (which communicates with
the outside via the two openings known as ““f holes”); in
other words the section show on the bottom right of Fig. 1.

The importance of considering the frequency-dependent
dynamics of both the wood and the air is made clear if we
first discuss the simplest case, in which we imagine the
frequency of string vibration to be so low that, under the
action of the oscillatory force which the string exerts on
the violin bridge, the shell and the air behave in a manner
that is essentially static, following instantaneously the
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changes of force as they occur. Under those circumstances,
a force applied at the bridge will cause some distortion of
the shell with a consequent change in its volume; however,
whatever volume change does occur in the shell, a corre-
sponding amount of air will flow in or out of the f holes,
so that the total volume of shell plus air will remain exactly
unchanged. I like to refer to this rule as the “toothpaste
effect,” because of its analogy to what happens when you
squeeze a tube of toothpaste: the volume of toothpaste
which emerges will be exactly the same as the decrease in
volume of the tube, so that the overall volume remains
constant.

Now it is a fact that, at least at long wavelengths (which
correspond to low frequencies), the radiation of sound is
dominated by what is called the monopole moment of the
source, which is precisely the amplitude of the overall vol-
ume change that it experiences; hence we conclude that if
the body of the violin behaved statically, no sound radia-
tion at all would occur. In other words, to try to imagine
that the wood and air of the violin body behave statically is
not merely a poor approximation numerically, but an ap-
proximation which totally destroys the problem we wish to
examine.

On the other hand, if we ask at what frequency (apart
from any radiative considerations) we would expect the
static model to fail anyway, we might estimate where the
shell might be expected to have its first resonance, which is,
of course, the frequency at which effects of inertia (stati-
cally negligible) become comparable with effects of elastic-
ity. We can get some idea of the Hooke’s Law force con-
stant by imagining that we put a 1 Kg weight on the center
of a violin’s belly—where the bridge exerts its forces—and
measure its resulting displacement; in order of magnitude,
we might see 0.1 mm or so. On the other hand, imagining
the system in free vibration and visualizing the mass of
wood involved, our estimate might be in the range of 10 g.
Putting those numbers into the formula for the natural
frequency of the corresponding oscillator gives us an an-
swer in the vicinity of 500 Hz, right at the low end of the
important audio spectrum. This makes it clear that to treat
the violin motion as quasistatic would, in any case, be non-
sense: we must, instead, formulate the behavior of the sys-
tem dynamically, as the response of its various normal
modes to the forcing stimulus.

In fact, the toothpaste effect (known more formally as
the sound hole sum rule) is overcome, and the violin en-
abled to radiate, precisely because the wood motion and
the air motion have different natural frequencies, causing
the exact cancellation between them to be destroyed. Typ-
ically, the lowest air mode has a frequency around 290 Hz,
and the lowest wood mode (as we just saw) more like 500
Hz, so that the toothpaste effect is broken as soon as the
playing frequency begins to approach 200 Hz or so. (For
reference, the lowest note that a violin can play, the open
G, has a frequency of 196 Hz.)

To work out the consequences of this point of view, we
first review the response of a single normal mode as a
function of frequency. Consider, for example, the wood
motion by itself; let its modal frequency be 500 Hz, and let
it have a Q of 45. (As a reminder, the “Q” of a mode is the
ratio of its modal frequency to the width of its response
peak at a height of 272 of the maximum; it is also the
ratio of the amplitude of the elastic restoring force to the
amplitude of the dissipative force, when the driving fre-
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Fig. 8. Monopole moment as a function of frequency, for fixed force
amplitude applied to the bridge, of (a) a typical “wood mode” and (b) a
typical “‘air mode.” The upper section of each graph shows the amplitude
of the monopole moment; the lower section is its phase relative to that of
the applied force.

quency is at the center of the resonance, that is, equal to
the modal frequency.) Figure 8(a) shows the displacement
amplitude as a function of frequency, when the amplitude
of applied sinusoidal force is kept constant. At low fre-
quencies the behavior is static; that is, the displacement
follows Hooke’s law, being proportional to the applied
force and independent of frequency. As the modal fre-
quency is approached, we observe the phenomenon of res-
onance, whereby the displacement amplitude (still for the
same given force) rises to a much higher value. Finally, at
very high frequencies the motion is governed by the inertia,
which means that it is the acceleration rather than the
displacement that is proportional to the force; accordingly,
the displacement amplitude now drops as the inverse
square of the frequency.

The same figure shows, in its bottom (shaded) part, the
phase of the displacement relative to the applied force, also
as a function of the driving frequency. At the low-
frequency end, the displacement, being governed primarily
by elasticity, is naturally in phase with the force; that is, at
cach instant the displacement is in the direction of the
applied force. By contrast, in the high-frequency limit, that
is, at driving frequencies well above the modal (or “reso-
nant”) frequency, it is the acceleration which is in phase
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with the applied force; the displacement is then (according
to the well-known behavior of simple harmonic motion)
180° out of phase. At the exact center of the resonance, the
phase difference is 90°.

B. “Positive” and “negative” modes

In this lowest “wood mode,” or “body mode,” an up-
ward displacement of the section of the body that lies im-
mediately under the bridge corresponds to an overall “in-
flation” of the body volume, that is, a positive monopole
moment. Accordingly, the same graph shown in Fig. 8(a)
can also be interpreted as the amplitude of the monopole
moment as a function of frequency, for a fixed amplitude of
driving force applied at the bridge.

Let us now shift our attention to the lowest air mode,
whose characteristic motion consists primarily of an alter-
nate inward and outward flow of air through the f holes.
Viewed as a harmonic oscillator, we have a system whose
mass is essentially the mass of air in and around the f holes
(because that is where the kinetic energy is concentrated),
and whose “spring” comes from the air confined inside the
body of the violin, which is being compressed when the
flow through the f holes is inward and expanded when it is
in the opposite direction. Although the mass involved in
this mode is much smaller than the wood mass that we
considered in connection with the lowest wood mode, the
force constant is also a great deal smaller, as a result of
which the modal frequency comes out comparable to (in
fact, lower than) that of the wood mode, typically around
290 Hz. This lowest air mode is often called the “Helm-
holtz mode,” not because Helmholtz considered it specifi-
cally but because it is similar to the vibration of what is
called a “Helmholtz resonator” such as an empty glass
bottle.

If, however, we want to construct a graph of monopole
moment vs frequency for this air mode, in analogy with
Fig. 8(a) for the wood mode, we must consider a crucial
difference: whereas for the wood mode a downward static
force on the bridge region causes a compression of the
violin body, and hence a decrease in its overall volume, in
the case of the air mode a downward static force applied to
the violin shell at the bridge causes air to be expelled, thus
increasing the effective volume of the system. (That is pre-
cisely the origin of the sound hole sum rule, or toothpaste
effect: with both modes present, the low-frequency mono-
pole moments of the two exactly cancel.) As a resuit, the
graph of monopole moment amplitude vs driving fre-
quency, for constant applied force at the bridge, is as
shown in Fig. 8(b). Its general appearance is similar to
Fig. 8(a), except that the phases are all shifted by 180°. If
these two modes—the single wood mode and the single air
mode—were the only ones present, the sound hole sum
rule would require the low-frequency amplitudes in Figs.
8(a) and 8(b) to have exactly the same magnitude.

Figure 9(a) shows the superposition of such a pair of
modes explicitly. The two previous graphs are copied as,
respectively, a dashed and a dotted line; the sum of the two
is shown as a solid line. We note, first of all, the cancella-
tion as the frequency goes to zero, which we have been
remarking on; we note also that, as each modal frequency
is passed, the phase moves upward by 180°. Another im-
portant feature is that in the region between the two reso-
nances there is a plateau: the contributions of the two
modes add instead of cancelling. This is due to the fact
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Fig. 9. (a) Composition of the two moments of Fig. 8 (solid; the dashed
and dotted curves repeat those of the previous figure). We note especially
the plateau between the two peaks. (b) Composition of three modes, one
negative and two positive. Note the dip between the two positive peaks
and the retrograde phase.

that, while they “intrinsically” have opposite signs, this is
the region where one of them has already experienced its
180°-phase shift but the other has not. Stated differently,
the air mode is already in its inertia-limited régime but the
wood mode is still in its elasticity-limited régime. I suspect
that the appearance of this “plateau”” may be an important
factor in “leveling out” the frequency response of a violin.

Finally, Fig. 9(b) shows a superposition of three modes,
namely, the two shown in the previous figure plus one
additional one at 600 Hz, whose amplitude is assumed to
have the same sign as the wood mode at 500 Hz. The sound
hole sum rule now requires the Helmholtz mode to be
cancelled at low frequencies by the sum of the other two,
and in this figure we have adjusted its strength so as to
satisfy that condition. But what is especially interesting—
and may possibly be important in determining the musical
properties of an instrument—is the behavior at frequencies
between the middle and the highest mode: we now observe
a radical dip in the radiativity, rather than the plateau
characteristic of the region between the Helmholtz mode
and the first wood mode. The explanation is, of course,
clear; since the middle and highest modes have strengths of
the same sign, they will cancel, rather than add, when the
lower one is already inertia limited but the higher one is
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still elasticity limited. It is worth noting that an even
clearer signature of this kind of behavior is the retrograde
phase, that is, a phase slope which is negative instead of
positive.

This type of behavior suggests that it may be important
to distinguish modes whose strengths have opposite signs.
Although it is tempting to call one type “airlike” and the
other “woodlike,” by extension of the nature of the lowest
two, it seems to me that this would be a misleading no-
menclature, since all modes, and especially the higher ones,
are in fact combinations of air motion and wood motion,
and the actual sign of the monopole strength is determined
as a balance between the two; moreover, in the higher
modes, which have some nodal lines in the wood motion,
even that wood motion itself will have both positive and
negative contributions. Accordingly, I prefer to refer to the
two types simply as negative and positive modes. The gen-
eral rule that will prevent the occurrence of regions of
retrograde phase, and the corresponding sharp dips in the
radiativity amplitude, is then that positive and negative
modes should alternate in frequency.

The type of quantity that we have been plotting, defined
as the monopole moment developed by a violin per unit
force amplitude applied to the bridge, is called its radiativ-
ity. Figures 10(a)-10(c) show three examples of experi-
mentally measured monopole radiativity data, correspond-
ing to three violins of widely different qualities. It is
interesting to note that a retrograde phase region some-
where in the 450-550 Hz range appears in all three. Since
in this region the density of modes is still low, it would be
possible, in principle, to identify the exact nature of all of
them; armed with such knowledge, plus a knowledge of
physics (or the collaboration of a physicist), a violin
maker could adjust the individual modal frequencies up or
down. Whether this could result in an appreciable im-
provement in instrument quality is, at this time, not defin-
itively known, although some strong suggestions in that
direction have been made.

C. Synthesis of violin sound

As we saw in Sec. II D it is possible, on the basis of the
theory we have developed in this discussion, to program a
computer to integrate the appropriate differential equations
s0 as to obtain a simulation of the actual motion of a bowed
string. In the same way, our discussion of radiativity, in-
cluding measurements on an actual violin, can be used to
simulate the sound field produced for any given time de-
pendence of the force applied to the bridge. The simplest
case is that of a violin which is simply tapped, that is, to
which a force pulse is applied, since the computation of the
resulting sound does not depend on any understanding of
the string dynamics. From there we can proceed to the
computation of the sound produced by a violin which is
plucked, that is, played “pizzicato.” Here the string dy-
namics does enter, since we have to understand not only
the ideal motion of a plucked string but also how the vi-
bration dies away with time; but the dynamics of the in-
teraction with the bow, which is considerably more com-
plicated, can still be omitted. Finally, we can combine
everything we have studied in order to synthesize the full
violin sound.

(The original presentation of this paper included at this
point a tape recording of the following synthesized sounds,
constructed on the basis of the above considerations.
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Fig. 10. Measured monopole radiativities of three actual violins between
190 and 1000 Hz. The three differ radically in quality

(1) The sound of a violin being tapped with pulses of
various lengths.

(2) A pizzicato passage from a Bach trio sonata.

(3) The same passage arco, or bowed. The sound is that
of a novice whose bowing technique is very poor; this
should come as no surprise, since we spent a great deal of
time programming the violin and none programming the
violinist.

(4) As a lighthearted variation, we played the same pas-
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sage with random errors in frequency. This adds a certain
realism, since the bowing quality of a beginner is now com-
bined with appropriately poor intonation.

(5) A three-octave scale, starting with the G below mid-
dle C, the lowest note a violin can play.

(6) Finally, we returned to the Bach passage, but this
time ““accompanied by’ a synthetic piano which the author
had worked on some time earlier. This piano had also been
programmed on the basis of “first principles,” but no dis-
cussion of it was presented.)

V. THIRD MEDITATION

We have spent by far the greater portion of our time on
the first part of the title, seemingly ignoring the second
altogether. There are excellent reasons for this.

First of all, from where we stand, we can certainly see
the horizon, but not what is beyond the horizon, so that
addressing the question of what we do not know is, at best,
trying to describe our horizon. Exciting as that can be, we
will finally be forced to acknowledge that the horizon is
only one dimensional. In other words, describing what we
do not know is really no different from describing the outer
reaches of what we do know.

Second—and more importantly—the question of what
we do not know is difficult for a physicist because of what
we pointed out in our first meditation, namely that physics
is defined, not by its subject matter, but by the methods it
uses. Therefore, trying to state what physics we do not
know is equivalent to compiling a list of questions to which
we would like to know the answers, and to which we think
that the methods of physics are applicable; by definition,
this would itself be a fundamental contribution to the re-
search. Again, stating what we do not know becomes an
enumeration of things we do know. I think that is why
people sometimes say that engineering is an activity in-
volved with finding correct answers, but physics is an ac-
tivity involved with finding correct questions.

VI, WHAT SCIENCE DOES NOT KNOW

A. Judging excellent violins

After the thoughts I presented in Sec. III it may seem
paradoxical that, in trying to formulate what science does
not know about violins, I myself come up with the state-
ment that what we lack is the Secret of Stradivarius. I use
that phrase more metaphorically, however, as I shall now
try to explain.

No knowledgeable person will deny that a certain An-
tonio Stradivari, working in Cremona during the decades
around 1700, produced some very, very fine violins; at the
same time, no knowledgeable person will deny that
throughout the past three centuries there have been
makers—not, perhaps, great hordes of them, but nonethe-
less some—producing very fine instruments, right down to
our own day. Indeed, the task of making precise compar-
isons borders on the meaningless, especially in view of the
fact that a genuine Stradivarius, with its great museum
value and even greater mystique, can command an enor-
mous price on the market.

But, you may say, why not simply compare the sounds
of a number of instruments, by having a qualified jury
express its opinions after listening to each of them played
behind a screen? Unfortunately, a violin, unlike, for exam-
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ple, a piano, does not produce any sound, or at least not
any “violin sound,” unless it is played by a violinist; and to
test dependably the sound of a very good violin obviously
calls for the services of a very good violinist. But what,
then, is the jury hearing, the violin or the violinist? Because
the truth is that, as can be easily verified, if you give a
virtuoso violinist the junkiest instrument in the world, the
sound that comes out will very quickly bring tears to your
eyes; but the conclusion to be drawn is not that quality
makes no difference. Regardless of the effect produced on
the listeners, the violinist himself will be keenly aware of
his instrument’s low quality, because of the way it “has to
be fought” to produce any kind of decent sound—whereas
a fine violin gives the illusion of “playing itself,” as many
players will attest. For this reason, if there is a concert to
be given, the good violinist will choose the best instrument
he (or she) can afford, thus minimizing the energy drain
that goes into controlling the instrument and leaving more
to be devoted to playing the music itself.

In this way it becomes clear that which of a number of
violins is “the best” can be defined only in relation to a
particular violinist: it is the one which responds best to that
particular player’s taste and manner of playing. In fact, it
is well known that very good violinists can, and do, dis-
agree on which of a number of violins is the best.

B. The new secret of Stradivarius

But in spite of the ambiguities which exist in judging the
quality of outstanding instruments, it remains true—so
true, in fact, that it is often forgotten—that there is no
ambiguity at all on a coarser level. In particular, if we hand
any experienced player a violin and ask that it be classified
into one of three categories: (a) “student instrument;” (b)
“decent professional instrument;” or (c¢) “fine solo instru-
ment,” the judgment would not take more than about 30 s,
and the opinions of different violinists would coincide ab-
solutely. (Perhaps “absolutely” is an overstatement, since
borderline cases are always possible; but at least there
would not be any question about which border such an
instrument is on.) The consensus that can be found on this
matter, no matter how independently and discreetly the
questions are asked of the different experts, establishes that
we are dealing with a quality which is objective, and which
can therefore, in principle, be translated into physical spec-
ifications, determined by tests and measurements that can
be defined in purely physical terms. But the tantalizing fact
is that no such specification which successfully defines even
coarse divisions in instrument quality is known. It is this
extremely frustrating fact to which I refer as “The New
Secret of Stradivarius.”

In fairness, I should state that many people have tried
their hand at this question, and bits and pieces have, at
times, appeared to emerge. But—so it seems to me—in
order to constitute a valid physical understanding, any al-
leged answer, whether partial or total, would have to in-
clude a physically functional specification of what it is that
a violin is supposed to do, a specification whose nature is
such that, in principle at least, it does not exclude the
possibility of an instrument being constructed in the future
which is better than any that have been built in the past.
The evaluation of a particular instrument would then con-
sist of a simple measurement of the degree to which it does
do what it is supposed to do. But I emphasize that the
original specification must be in terms of physically mea-
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surable properties; to “be responsive under one’s finger,”
“have a beautiful sound which carries,” “speak clearly and
easily,” and other such expressions which are no doubt
meaningful but have not been translated into physical
properties, cannot be considered to answer the question I
am posing.

VI. CONCLUDING MEDITATION

Many years ago, just after I finished presenting a collo-
quium on piano physics at Michigan State University, an
anonymous student handed me a sketch he had made while
listening to me. It was entitled “Great Moments in Physics
#42: Galileo Begins the Study of Musical Instruments,”
and showed the great man himself dropping a piano and a
saxophone side by side from the top of the Leaning Tower
of Pisa.

At moments of discouragement, 1 have been known to
look at that picture and wonder just how far we have come
from such an apocryphal beginning. Yet the truth is that
we have come an enormous distance. The trouble is that
the nature of research is forever to be doing something that
we do not know how to do and, as soon as we have learned
how to do it, to stop doing it and look for a new problem;
this means that a researcher’s mind is forever fixed on what
has not been achieved—which, by the standards of the

world, means being condemned to a life of perpetual dis-
couragement. That this is not the way that we researchers
perceive it is one of the great miracles of human creativity,
and the primary reason that we love our work as much as
we do.
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An analysis of Brownian motion based upon a “Langevin equation” form of Newton’s second
law provides a physically motivated introduction to the theory of continuous Markov processes,
which in turn illuminates the subtle mathematical underpinnings of the Langevin equation. But
the Langevin approach to Brownian motion requires one to assume that the collisional forces of
the bath molecules on the Brownian particle artfully resolve themselves into a “dissipative drag”
component and a “zero-mean fluctuating” component. A physically more plausible approach is
provided by a simple discrete-state jump Markov process that models in a highly idealized way
the immediate effects of individual molecular collisions on the velocity of the Brownian particle.
The predictions of this jump Markov process model in the continuum limit are found to
precisely duplicate the predictions of the Langevin equation, thereby validating the critical

two-force assumption of the Langevin approach.

I. INTRODUCTION

Brownian motion is the motion of a macroscopically
small but microscopically large particle that is subject only
to the collisional forces exerted by the molecules of a sur-
rounding fluid. If M denotes the particle’s mass and V()
its instantaneous velocity, then the traditional way of ana-
lyzing Brownian motion' is to begin with the Newton’s
second law equation
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dav(e)
ar =—yV(6)+ fT(2). | (1

Here ¥ is a positive constant called the drag coefficient,
I'(#) is an entity called the Gaussian white noise process
(which will be discussed more fully later), and f is-a con-
stant whose value remains to be specified. The physical
interpretation of Eq. (1) is that the particle is subject to
two kinds of forces: a steady dissipative drag force
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