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Body Vibration of the Violin—
What Can a Maker Expect to Control?

J. Woodhouse
Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, U.K.

ABSTRACT
At low frequencies it is sensible to describe violin body vibration
in terms of individual modes, and for a maker to seek to control
these modes explicitly.  At higher frequencies this ceases to be a
realistic goal.  The modes overlap in frequency and are very sensitive
to small changes in the construction.  The acoustical information
useful to a maker then relates to controllable features of the behavior
that “shine through” the complexity of detail.

INTRODUCTION
The constructional details of a violin body control its vibration
behavior, which in turn controls the sound and playing properties
of the instrument.  This seems obvious, yet the detailed links along
the chain have proved remarkably hard to elucidate.  Although
considerable research effort has gone into violin acoustics (see
particularly references [1, 2]), it is rarely possible to give satisfactory
answers to the questions posed by instrument makers, who usually
want to know how the “sound” or “playing quality” will be affected
by a particular structural change.

A violin, in common with any other structure undergoing small-
amplitude vibration, can be characterized by its set of vibration
modes.  Each mode has a resonant frequency, a damping factor, a
mode shape and a radiation efficiency and pattern, and once you
know this information about each mode the behavior of the
instrument is fully described.   In the audible range of frequencies a
violin has several hundred vibration modes.  In some sense, the task
of the violin maker is to control the parameters of these modes to
produce the desired vibration behavior.  However, a maker cannot
expect to be able to manipulate more than a tiny fraction of these
parameters explicitly.  Understanding which features can in practice
be controlled is an important task for violin acoustics, and is the
subject of this article.  The question will not be answered fully, of
course, but some light can be shed by reviewing what is known in
the context of the contemporary approach to other complex
vibration problems.

Any structural change may influence the modal parameters.  A
change of mode shape may alter the radiation efficiency, but perhaps
more significantly it may change the mode amplitude at the bridge

and hence the efficiency of excitation by the string.  Particularly if
a mode has a nodal line that passes close to the bridge, small
movements of that nodal line may have large effects on strength of
coupling to the string.  If the mode plays a significant role in the
radiated sound, then changes in its frequency and damping factor
are also likely to produce audible consequences.

Altering the radiation of sound is not, however, the only route by
which a structural change may have musical consequences.  As
well as being interested in “sound”, a player is also interested in
various aspects of “playability”.  One instrument, or string, or note,
may be found “easier to play” than another, and such differences
can be very important.  Any influence of the body vibration on the
response of the string can only come through the bridge (or perhaps
through vibration of the fingerboard at the other end of the vibrating
length of string).  To a first approximation, we should expect all
variations in playability between instruments to be attributable,
somehow, to differences in the driving-point response at the string
notch [3, 4].  This depends, again, on the modal amplitudes at that
point, but this time weakly-radiating modes might be just as
important as strongly-radiating ones.

In their very different ways, important contributions to this subject
have been made by Cremer [1], Hutchins (see for example the section
introductions and reprinted papers in [2]), Weinreich [e.g. 5, 6],
Marshall [7] and Bissinger [e.g. 8, 9], among others.  But no one has
contributed more to this area than Jansson, whose entire research
career has been focused on the vibration of the violin body and its
enclosed air. His contributions include many measurements,
especially via laser holography [10] or bridge admittance [e.g. 11],
systematic investigations of the effect of various structural changes
in his collaboration with the violin-maker Niewczyk [e.g. 12], and
recently his recognition of a significant feature of instrument
response originally called the “bridge hill [e.g. 13], to which we
return later.

OVERLAP FACTORS
Modal Overlap Factor
One way to explore the extent to which a maker can control the
vibration modes of an instrument is through the interplay of two
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quantities, the modal overlap factor and the statistical overlap factor.
The modal overlap factor is the simpler to understand: it is the ratio
of the bandwidth of individual resonance peaks to the average
spacing of adjacent resonances [e.g. 14].  When modal overlap is
low, each mode contributes a recognizable peak to any frequency
response function.  When modal overlap is high, on the other hand,
several modes make a significant contribution at a given frequency,
and the total response is governed by a summation of these
contributions.  The result will depend on the relative phases and
amplitudes of the various modes.  Peaks in a frequency response
function will be governed by these interference effects, not by
individual modes.  It is useful to think about individual modes at
low modal overlap, but with high modal overlap it is likely to be
more appropriate to use a statistical description, dealing in such
quantities as average levels, average peak spacings, and typical peak-
to-valley heights.  The most familiar example occurs in room
acoustics.  Modal overlap at normal audio frequencies in a moderate
or large room is very high, and room acoustics is a statistical science
[e.g. 15].

Statistical Overlap Factor
The statistical overlap factor is defined in a similar way to the
modal overlap factor, to characterize the sensitivity of mode
frequencies to structural changes.  For example, a luthier will
ordinarily only depart from accepted patterns of thickness
distribution in the top and back plate of a violin by fractions of a
millimeter.  For a given instrument, we can imagine randomly
changing the thickness distributions within that tolerance.  Each
mode frequency will change a little, and the sensitivity of the
structure can be characterized by the range of these frequency shifts
when many different thickness perturbations within the assumed
tolerance are tested.  The statistical overlap factor is defined as the
ratio of this average shift to mean modal spacing [16].

Different statistical overlap factors can be defined for different
populations of violins.  What has just been described is the factor
relating to “all respectable violins based on a single model” since
only graduation changes were considered.  A different answer would
probably be obtained if one considered the population of “all
respectable violins”, in which outline and arching were also varied.
A different answer again would be obtained from instruments
deliberately built to be as similar as possible in all respects.  One
could even consider the same violin, measured at different times
and therefore under different conditions of humidity, temperature
and recent playing history.

If the statistical overlap factor is small, individual modes more or
less retain their identity under the permitted variation in the
structural properties.  If statistical overlap is high, on the other
hand, individual modes will have very little recognizable identity
from one instrument to another in the chosen population.  A variation
within the acceptable limits moves modes far enough that they
interact strongly with their neighbors. The number of modes remains

the same, but individual mode shapes are likely to change beyond
recognition. With high statistical overlap it makes little sense to
look for “the same mode” in two different instruments: any scheme
for classifying and labeling modes breaks down under these
conditions.

Both modal and statistical overlap factors tend to increase with
frequency.  The modal spacing in a violin box is approximately
constant at low frequencies (governed by the bending-plate behavior
of the box) and then decreases at higher frequencies (from the
increasing contribution of internal air modes) [6].  Modal damping
factors remain approximately constant with frequency, so that the
half-power bandwidth increases roughly linearly with frequency.
It follows that the modal overlap, which is low at low frequencies,
grows with frequency and eventually becomes large.  In a similar
way, the effect of a variation in thickness, arching shape or material
properties is to shift modal frequencies by a certain percentage,
which is roughly independent of frequency.  The absolute
fluctuations in modal frequency thus increase approximately
linearly with frequency, and the statistical overlap factor does the
same.  Combining these two effects, we should expect a
deterministic description of individual modes to be useful at low
frequencies, but for sufficiently high frequencies a different,
statistical, description needs to take over [see e.g. 17].

“. . . a maker cannot expect to manipulate more
than a tiny fraction of these parameters”

Experimental Values
To find out what precisely is meant by “sufficiently high
frequencies” requires experimental data.  If a single measurement
is to be used, then the best candidate is the input admittance (or
mobility) at the bridge top, in the plane of bowing.  This contains
the main information relevant to any differences in playing
behavior.  It is not directly a measurement of radiated sound, but it
does give some information on that subject while circumventing
the difficulties associated with radiation patterns and room
acoustics, which add additional features to the response and make
interpretation more difficult.  The input admittance governs the
rate of energy transfer from the vibrating string into the body.  This
energy is either lost in internal damping in the body, or is radiated
as sound.  If all modes had the same radiation efficiency the energy
radiated would be a fixed fraction of this total input energy and
would thus follow the same response curve.  The specific
measurement used here is of the velocity response at the E-string
corner of the bridge in response to a force applied at the G-string
corner, both in the direction of bowing.  This measurement gives a
good approximation to the input admittance (or mobility) at the
bridge top [11].
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Figure 1 shows a typical result for a good modern violin, and gives
information about modal overlap. Figure 2 shows superimposed
results for five different violins by the same maker (including the
instrument shown in Fig. 1), and gives information about statistical
overlap.    Up to the deep antiresonance around 650 Hz, all the
curves are rather similar and show quite well separated peaks.  Both
overlap factors are fairly small in this range.  At slightly higher
frequencies, up to 1.5 kHz or so, the curve of Fig. 1 shows peaks that
are beginning to overlap.  At the same time, the differences between
the set of curves in Fig. 2 increase.  We can deduce that both the
modal overlap factor and the statistical overlap factor are reaching
significant values in this range.  At frequencies above 1.5 kHz the
general trend of the five curves remains similar, but they diverge
considerably in detail.  Both overlap factors are now greater than
unity, and on both counts any attempt to describe the behavior in
terms of individual modes is likely to be extremely difficult and not
very illuminating.

When a comparison is made of input admittances of any set of
normal violins of reasonable quality, a similar description is
generally found to apply: see for example the results published by
Jansson [13] and Dünnwald [18]. The conclusion is that up to about
650 Hz any two violins are likely to show mode shapes that are
recognizably related.  For frequencies above that up to 1 kHz or so
it is possible with careful measurements [e.g. 7, 9] to determine the
modes despite moderate overlap, but the shapes are likely to be
much less recognizable from one instrument to another.  At higher
frequencies it is doubtful whether there is any virtue in talking
about individual modes, because both the modal overlap factor and
the statistical overlap factor are probably too high.

THE LOW-FREQUENCY MODES
The modes below 650 Hz or so, common to most violins, are familiar
to CAS readers.

(i)  “Plate Modes”
There are three modes in this frequency range primarily arising
from bending and stretching motion of the top and back plates of
the box.   The modes typically cluster in the range 380–600 Hz, and
some aspect of this cluster of modes corresponds to what was called
the “main body resonance” in the earlier literature of violin
acoustics [e.g. 19].  Examples of these three modes are shown in Fig.
3, for one of the violins whose behavior was shown in Fig. 2.  Pictures
of similar modes have been shown by many authors, e.g. Marshall
[7], Jansson et al. [10].

 The lowest of the three, labeled by Jansson “C2” and by Marshall
“vertical translation of C-bouts”, is shown in Fig. 3a.  It typically
occurs in the frequency range 380–440 Hz.  It can be thought of as a
mode in which the entire box behaves rather like a thick plate, back
and top moving approximately together at each point in a twisting
deformation with roughly one complete wavelength of twist in the
length of the body.  The other two modes, shown in Fig. 3b,c, are
“twins”, labeled by Bissinger “B1–” and B1+” [20].  (Jansson and
coworkers [e.g. 11] label them “T1” and “C3” respectively.)  The
most graphic name for them is the “baseball modes”, since in each
case there is a single, sinuous node line going around the body like
the seam on a baseball.  B1– typically occurs in the range 450–480
Hz, B1+ in the range 530–570 Hz.  Unlike C2, these two modes
involve significant volume change of the box, and they are thus
strong radiators of sound.

(ii)  “Air Modes”
There are two low-frequency modes associated primarily with air-
pressure variation in the internal cavity of the violin: a modified
Helmholtz resonance typically around 280 Hz, usually denoted
“A0”; and a first standing wave in the length of the box similar to an
organ-pipe mode, typically in the range 470–490 Hz, first identified
by Jansson [21] and denoted by him “A1”.  Figure 3d illustrates the

Figure 1.  Input admittance at the bridge, in the direction of bowing,
for a violin by David J Rubio.

Figure 2.  Input admittance at the bridge, in the direction of bowing,
for five violins by David J Rubio, including the one shown in Fig. 1.
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mode A1.  This is primarily an air mode, but with a careful
measurement it shows up through the response of the structure, the
upper and lower bouts alternately “inflating” and “deflating” in
response to the pressure changes inside.

(iii)  “Tailpiece Modes”
At low frequencies, the tailpiece behaves as a rigid body suspended
on the strings and tailgut.  As a rigid body it would have six degrees
of freedom, but for one of these (axial motion parallel to line of
strings and tailgut) the suspension is stiff, pushing the associated
resonant frequency out of the low-frequency range.  There remain
five tailpiece resonances to be considered.  Stough [22] has studied
them in some detail.  He reports that three typically occur below
200 Hz, below the fundamental of the open G string (196 Hz), while
the remaining two can range widely in the range 300–800 Hz,
depending on tailpiece mass and tailgut length.

(iv)  “Neck/Fingerboard Modes”
Finally, there is a group of modes based on bending or twisting
beam-like behavior of the neck and fingerboard, with the attached
box acting as an extension of the beam.  The list given here is not
exhaustive: we discuss only the two modes which fall in the range
200–700 Hz and which seem to be of some importance because they
can interact significantly with other modes already listed. One

mode, usually called “B0”, typically occurs at a frequency in the
vicinity of the lowest “air” mode, A0.  It involves motion in which
the scroll, neck and body vibrate as a single beam in its lowest free-
free mode, while the cantilever-projecting length of the fingerboard
vibrates vigorously in the opposite phase to the body beneath it.
The second mode of relevance here is the lowest torsional mode of
the projecting portion of the fingerboard.  This mode often occurs
at a frequency within the “main body cluster” discussed in (i) above.

Of these low-frequency modes, measurements suggest that only
A0, B1– and B1+ are strong radiators of sound in the violin, although
Bissinger has shown that A1 can be a significant radiator of sound
in larger instruments of the violin family [23].  The tailpiece and
neck/fingerboard modes radiate very little, although their effect
may be heard clearly by the player, who has one ear very close to
the violin body.   All these modes might in principle contribute to
issues of “playability” by influencing the driving-point response at
the bridge.  They might also influence behavior by acting as “tuned
absorbers”, increasing the energy dissipation of the violin near their
resonant frequency in exactly the same way as a “wolf suppressor”
[24].

Although the items in this list have been described as “modes”, this
can be misleading even at these low frequencies.  The descriptions
above are of a set of types of motion of the violin body and enclosed
air, which often appear as separate mode shapes.  However, strictly
this is a description of the degrees of freedom of the violin body
which taken in isolation would have resonant frequencies in this
frequency range.  If two or more of these would have resonant
frequencies that are close together, then the actual modes of the
violin will show combinations of the motions described above.
The particular case of coupling of the motions described above as
the A0 and B0 “modes” has been studied in detail by Woodhouse
[25], and illustrated with experimental results.  A similar analysis
could be developed for other combinations.  In every case, one
should expect to see “veering” behavior [25, 26].  If adjustments are
made which would tend to bring two frequencies close together,
then strong interaction will occur and the two frequencies will in
fact never approach more closely than a certain minimum separation.

As the two overlap factors increase, so the likelihood of such
interactions increases.  Even in the low-frequency range interactions
are quite common, and it is not always easy to recognize all the
members of this “canonical” set of modes on a given instrument.
The situation becomes rapidly more complicated at higher
frequencies.  It is probably safe to say that the modes listed above
are the only ones which usually retain their identity sufficiently
clearly that it makes sense for an instrument maker to think in
terms of explicitly controlling their frequencies, damping factors
and mode shapes by structural adjustments.  An effort to do just that
has been described by Schleske [27], in his procedure for making a
“tonal copy” of an instrument.

Figure 3.  Mode shapes for some significant low-frequency modes
of a typical violin: (a) C2; (b) B1-; (c) B1+; (d) A1.  Node lines are
shown as heavy lines.  Back and front plates are viewed from the
outside; + and - signs indicate the positions of data points and the
relative phase of motion, + denoting “outwards” and - denoting
“inwards”.  Frequencies and Q factors are also shown.
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WHAT CAN BE CONTROLLED AT HIGHER FREQUENCIES?
At higher frequencies, things are not so simple.  The modes overlap
and blur together, and the variability of mode shapes between
instruments is much greater.  Although, mathematically speaking,
the modes still determine the behavior, this point of view becomes
progressively less useful to the maker.  However, the fact that a
maker cannot control everything at higher frequencies does not
mean that they cannot control anything.   A natural approach is to
look for aspects of the violin that might retain deterministic behavior
at higher frequencies and thus offer control to the maker in a
straightforward way.  The list that follows is not by any means
exhaustive, but it is intended to indicate some possibilities and to
encourage the search for others.

Material Properties
The first item to consider does not concern constructional details
but material choice and behavior.  The physical properties of the
wood, including any modifications due to seasoning, chemical
treatment and/or varnishing system, obviously have a strong
influence on vibration behavior.  To an extent, variations in wood
properties can be compensated by varying the constructional details
such as graduation: this is the rationale for plate-tuning procedures.
However, this compensation cannot by any means be complete.  If
there is any substance in the persistent stories of “old instruments
being better” or of “magic varnish”, it must surely be sought in this
area.

The relevant properties of wood are density, several types of
stiffness, and associated measures of damping.  The three most
important stiffnesses can be visualized easily in terms of flexing a
thin plate of wood, such as a guitar top plate blank.  They relate to
bending along the grain direction, bending across the grain direction,
and twisting.  These are influenced by the growth of the particular
tree, and also by the cutting: for example, wood with “runout” will
have a reduced long-grain stiffness, and wood not cut accurately on
the quarter will have a reduced cross-grain stiffness [28].

The damping properties are likely to vary with frequency.  This
fact offers the most plausible explanation for old wood behaving
differently from newer wood.  Old wood will have changed.
Chemical changes occur with drying, loss of other volatile
components, oxidation, and reactions with atmospheric pollutants.
Chemical changes may also be deliberately made, for example when
ozone, ammonia or nitric acid is used to treat wood for one reason
or another.  Physical changes will also occur in the wood, especially
in wood which has been in an instrument for many years being
vibrated.  Cells in the wood structure may separate along their
joins, or micro-cracks may form in the individual cell walls.  All
these changes will modify the material properties.  In particular, it
seems a good guess that such damaged wood will have higher
damping, especially at the higher frequencies.  If damping increases
at higher frequencies, this would have a “filtering” effect on the
sound of the instrument, similar to turning down the treble control
on a hi-fi system.  There is some evidence of such an effect in acoustic

measurements on older instruments [18], but there is very little
reliable data on the actual changes to wood/varnish properties from
these various effects.  There is scope for fruitful research in this
area.

The Bridge
Next, we turn to parts of the violin structure which are likely to
have well-defined and controllable vibration resonances up at
frequencies where the violin as a whole has significant modal
overlap.  The first and most obvious candidate is the bridge.  The
vibrating strings apply forces to the top of the bridge, and the bridge
feet transfer these forces to the top plate and hence into body
vibrations which can radiate sound.  Since all vibration has to pass
through the bridge, it will be modified by the vibration response of
the bridge itself.  A typical modern violin bridge has two important
resonances at moderate audio frequencies: one around 2–3 kHz in
which the bridge top moves from side to side by “bending at the
waist”, and another around 6 kHz in which the top moves vertically
by “bending at the knees” [1].  These resonances can be moved
significantly by relatively small changes in the carving of the bridge
— this is the main source of the well-known influence of bridge
cutting on sound.

Jansson has drawn attention to a feature of the input admittance
curves of many good violins, a broad hump in the response in a
frequency range typically 2.5 kHz [e.g. 13].  He originally attributed
this to the filtering effect of the lower bridge resonance just
mentioned, and named the feature the “bridge hill”.  (Figure 1 does
not show this feature very clearly, but it can be seen in Fig. 2 in the
average behavior of the plotted curves in the range 2–3 kHz.)
Certainly, a broad hump of this kind is just what one would expect
the bridge resonance to create.  However, more recent work [29]
has indicated that other features as well as the bridge influence the
“hill”, and at present the precise details are not clear.  What is clear
is that the “hill” is an example of the kind of feature we are interested
in here, a high-frequency feature that somehow shows through the
quasi-random peaks and dips caused by the overlapping modes.

The “Island”
Another candidate for influencing Jansson’s “hill” is a feature of
the violin that is slightly less obvious than the bridge. The slot-like
shape of the f-holes creates an approximately square region of the
top plate that is somewhat isolated from the rest of the instrument.
This region was called “the island” by Cremer, and was included as
a separate element in his pioneering attempt to compute body modes
of the violin from a theoretical model [1].  His idea was that this
portion of the top plate may be sufficiently isolated as to have a
recognizable and distinctive influence on the vibration, particularly
since the bridge feet sit in this region.  One might perhaps expect a
small number of local “resonances” of this island to occur which,
when coupled to the rest of the instrument structure, produce similar
features to the “bridge hill”.  This is still an unresolved question,
but it deserves further study.
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The Soundpost
The soundpost is usually regarded as a rigid link, serving to couple
the top and back plates.  However, as a thin rod, it will have
resonances of its own.  The lowest would be a bending resonance
with approximately a half-wavelength in the length of the post.  The
frequency will depend on the length, diameter and material
properties of the post, and taking typical values of these parameters
(spruce, length 60 mm, diameter 6 mm) one might expect this to fall
in the vicinity of 3 kHz.  This could be expected to have some
influence on the vibration behavior in this frequency range, but
some theoretical modeling is needed to determine exactly what
form it would take.

One interesting point to note concerns the accuracy of fit of the
ends of the soundpost.  Good soundpost fit, and the right degree of
tightness, are well known to be important.  It has also been suggested
that shaping the post to change its bending stiffness can sometimes
have beneficial effects [30]. A bending resonance of the soundpost
gives a possible mechanism for such behavior.  A poorly-fitted post
will behave like a “pinned-pinned” beam, whose ends are able to
rock where they touch the plates.  A well-fitted post, under sufficient
force, will behave more like a “clamped-clamped” beam, in which
the ends can only rotate with the plates, not independently of them.
This will change the frequency of the post resonance, but perhaps
more importantly it allows this resonance to be efficiently coupled
to the plate behavior and thus to produce audible consequences of
some kind.  Again, this seems a promising topic for investigation.

“. . . many questions in violin acoustics can be
illuminated by an awareness of the modal and
statistical overlap factors”

DISCUSSION
It has been suggested in this article that many questions in violin
acoustics can be illuminated by an awareness of the modal and
statistical overlap factors.  These give a simple, intuitive and
measurable way to characterize the influence of damping and of
variations between instruments.  Different statistical overlap factors
can be defined for different populations of instruments, relevant to
different questions.  A broad question like “What is a violin?”
requires some knowledge of what features are in common between
all respectable violins.  A question like “How useful is plate tuning?”
perhaps suggests measuring, and comparing, statistical overlap
factors for two different sets of instruments: one set of careful
geometric copies of an original model taking no account of wood
variation, and a second set in which simple acoustical testing was
used to guide systematic compensation via arching or graduation
patterns for the variability of the wood.

The other general message of this article is that a description of
individual vibration modes is useful for low frequencies, but that
such a description ceases to be very illuminating above about 1 kHz
or so.  Instead, researchers should be looking for aspects of the
behavior of a violin in the kilohertz range, which somehow transcend
the complication of the many overlapping modes. These are the
things that offer makers a chance to control the musical result,
when they have no hope of controlling every individual mode.  Some
examples of such controllable features have been suggested, and no
doubt others can be dreamed up.  The most exciting challenge for
researchers in the next decade might be to conceive and carry
through projects, whether theoretical or experimental, which address
questions of this type. � CASJ
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