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INTRODUCTION
To the best of my knowledge, the first measurement of sound
radiation from a violin was by Backhaus in 1928 [1] (which makes
this endeavor exactly as old as I am). Having now been asked to
summarize the field “as we know it today” on the occasion of Erik
Jansson’s sixtieth birthday, I decided not to try to enumerate all the
data on the multiplicity of violins that is today available, nor to
present a complete history of everything that has ever been done in
the field. Instead, my purpose will be to discuss the options that are
available in designing such a project, to list the various types of
difficulties that each of them entails, and to inquire how the
accessibility of different methods has changed over this period.

One general remark: most people would accept the statement that
“the function of a violin is to make sound” as essentially tautological.
It seems to follow from this that the quality of a violin must somehow
be encapsulated in how well it makes sound; therefore, a sufficiently
complete measurement of quantities like radiativity is all that one
needs to define the difference in quality between one violin and
another. We shall return at the end of the paper to a discussion of
where that reasoning is insufficient.

METHOD OF EXCITATION
In most early experiments, the violin was excited by what is surely
the most obvious method — with a bow. Yet the very first
measurement [1] of the radiation field was quite ambitious, in that
it set itself the task of exploring not only the field’s overall magnitude
but also its directionality. For this purpose, and in the absence of
the kind of electronics that can capture the signals from a large
number of microphones simultaneously, either the microphone or
the violin had to be rotated around an axis passing through the
violin. This required the violin’s excitation (including, if possible,
its phase) to be kept absolutely steady for the length of time that it
takes the apparatus to make a complete revolution; and, if the results
are to encompass a complete sphere rather than just a single circle,

much longer than that. That is an unreasonable demand to make of
any bowing machine, let alone of a human player. For that reason,
Backhaus [1] (who used a small mechanically driven turntable in an
anechoic chamber) experimented with electromagnetic excitation,
but unfortunately gave us only a scant glimpse into his actual setup.
It seems clear, from his reproduction of the oscillographic signal
photographically captured as the violin rotated, that the stimulus
was not sinusoidal (he refers to it as elektromagnetische Anzupfung,
or “electromagnetic plucking”), but I, at least, was not able to figure
out what exactly it was.

The big difficulty, as Backhaus reports it, was lack of stability. This
is, indeed, understandable if his method consisted of an
electromagnetic drive (in which the magnetic field of a permanent
magnet surrounds some region of the metallic string and an
oscillating current is passed through the string) whose externally
controlled frequency is made to coincide with a string resonance.
Because of the very high Q associated with such a resonance, a
slight uncontrolled drift in tuning is difficult to avoid.

For this reason, Backhaus’s experiment was a failure. The best that
he could produce — after what was obviously a great deal of work
— is one single curve at 3300 Hz (the fifth partial of the E-string) for
half of a circle, and with no phase information. As far as the data
itself is concerned, it appears reasonable enough; but since the
frequency in question is deep in the region of directional tone color,
where the angular dependence is a very rapid function of frequency
[2], it is difficult to judge it in a detailed way.

After Backhaus, researchers went back to bowing, sometimes by
hand, sometimes by machines of varied design [3, 4]. A return to
electromagnetic excitation was made by Watson, Cunningham, and
Saunders in 1941 [5], with the instability that plagued Backhaus
obviated by damping all the strings; the excitation could now be
viewed as applying a force directly to the bridge. Considerably
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later, the damped string electromagnetic driver was further
developed by Dünnwald [6], who used it extensively; before him,
Meyer had accomplished a similar purpose with an
electromechanical actuator [7].

With the development of digital methods, yet another mode of
excitation appeared: the force hammer. Here the bridge is laterally
impacted by a mallet that contains a piezoelectric force sensor in
its head, producing an exact electronic record of the impact force as
a function of time; simultaneously, an appropriately positioned
microphone obtains a similar record of the sound signal as a function
of time. A Fast Fourier Transform performed on the two signals
then gives us both the applied force and the resulting sound in the
frequency domain, after which the usual assumption of linearity
allows us to divide one by the other and thus obtain the appropriate
radiativity function as a function of frequency. This method was
used by Bissinger and Keiffer [8] in obtaining the total radiated
power.

A rather different method, based on the principle of reciprocity,
was first published by Weinreich in 1985 [9]. Here the violin is put
into vibration by an external loudspeaker, and the motion of the
bridge detected with small accelerometers; by the principle of
reciprocity, one can then compute the field that would be radiated
if a known lateral force were applied to the bridge, just as the vibrating
string in fact applies it. In the 1985 paper the interest is primarily in
rather low frequencies, when the behavior of the violin is well
parameterized by a small number of multipole moments
(specifically, the monopole moment and three components of the
dipole moment), and all the computation is directed toward that
end; in fact, however, the same method is straightforwardly
applicable to the simple directional analysis of the field, by placing
the driving loudspeaker in any desired direction from the violin
and measuring the bridge motion then.

The great advantage of the reciprocity method is that, in terms of
size and weight, a transducer that detects motion can usually be
made much smaller and lighter than one which exerts a force (or
imposes a motion; in later work [2], we have replaced the
accelerometers with a phonograph pickup stylus resting on the
bridge, thus reducing both the load on the violin and the possible
damage to it to negligibility.)

In spite of the availability of these various newer excitation methods,
Wang and Burroughs [10] returned to a mechanically bowed setup,
using a continuous belt meticulously hand sewn with rosined
horsehair. They justify the considerable trouble involved in building
and maintaining such a “bow” by observing that it allows them to
excite, in addition to the more obvious transverse motion of the
string, the “correct” amount of torsional motion as well. Although
it is true that torsional motion, by exerting a torque on the bridge
notch instead of a force, would modify the degree to which various
shell modes are excited by the bowed string, the quantitative

importance of this effect is (in my opinion) doubtful. Nonetheless,
it would certainly be interesting to test this question by using the
apparatus of Wang and Burroughs and varying the diameter of the
string.

THE SAUNDERS LOUDNESS CURVE
The considerations are different, however, for the case of the so-
called Saunders loudness curve [3, 11]; Saunders himself refers to it as
the total intensity curve. In the original experiment described by
him, the chosen gamut of the violin is covered in semitone steps
twice: the first time by bowing as softly as possible, the second time
as loudly as possible. The desired curve is then obtained by averaging
the two results for each note. The reason this situation is in a different
category from the others that we have considered is that both the
soft limit and the loud limit are presumably functions not of the
violin alone but of the violin when it is bowed; it is, in other words, a
composite function of the violin’s ability to radiate sound and of
the bow’s ability to set the string into smooth vibration. In fact,
available theories of the two limits attribute their existence to quite
different mechanisms; this is obvious when you consider that the
loud limit must involve nonlinear dynamics of the driven string,
which cannot play a role in the determination of the soft limit.

According to Saunders the difference between the two curves, which
can be identified with the dynamic range of the instrument, is pretty
much constant at 30 dB.  However, if that were precisely true there
would, of course, be no sense in measuring them both separately.
Indeed, later applications of the loudness curve [12, 13] drop the soft
measurement and concentrate entirely on the loud.

If the exactly constant offset between the two, regardless of which
pitch is chosen on which instrument, were an absolute fact, there
could be only one conclusion: the ratio of the two string amplitudes
corresponding to the soft and loud limits must be independent of
the bridge admittance as seen by the string; otherwise, since the two
limits are determined by quite different laws, it would be an absolute
miracle if they tracked each other so precisely. The fact that the
loudness curve alone (or the “softness curve” alone) does vary, both
between notes and between instruments, would then have to be
attributed to the difference in how good those instruments (or the
different notes on one instrument) are at converting string vibrations
into sound. If that were the case, there would really be no point in
taking the loudness curves at all, one of the more modern excitation
methods being completely sufficient.

However, I personally do not believe that this is the case except in
a first approximation. Saunders himself remarks that there are some
variations in the dynamic range, but that they are “due probably to
the player.” This remains an interesting area to which some of the
modern bowing machines should be able to provide good answers.

DIRECTIONALITY OF DATA
With regard to the kind of attention paid to direction by various
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researchers, their data can generally be divided into three categories:
unidirectional, total, and directional.

In spite of the fact that the very earliest work on the subject, that of
Backhaus [1], made a serious (even if unsuccessful) attempt to
determine directional properties, both Saunders [3] and Meinel [4],
who followed him, seemed somewhat unclear on the subject. Both
indicate the necessity to choose the direction of measurement (that
is, of microphone placement) carefully and to keep it constant as
data was taken — in other words, they are well aware that the
direction matters; yet both of them are comfortable limiting their
data to a single direction, as though a single direction can validly
describe “the sound of the violin in general.” The same comment
applies to Dünnwald [6], who explicitly chooses a direction “typical
of listeners’ position in a solo concert,” but collects his data in an
anechoic chamber, which hardly duplicates what listeners in any
concert hear.

In fact, the choice of direction is not crucial at frequencies below
about 850 Hz, where the radiation pattern is close to isotropic. On
the other hand, at high frequencies the location of peaks and valleys
as a function of frequency can be very different for different
directions [2].

In terms of the nomenclature introduced at the beginning of this
section, we thus have to classify the data of Meinel, Saunders, and
Dünnwald as unidirectional.

At the other extreme from unidirectional data is total data, which
reports the sound power radiated, not in some chosen single
direction, but throughout the 4ð solid angle that surrounds the violin.
One way to collect such data is in a reverberation chamber, a space
with highly reflecting walls which, in effect, cause the microphone
to hear every sound a number of times coming from different
directions. This was the method adopted by Jansson and his
colleagues for the purpose of obtaining so-called long-time average
spectra [14, 15, 16].

“...understanding can only come from the
perception of patterns.”

Bissinger and Keiffer [8] measure total radiated power (still as a
function of frequency) by a different method: placing the violin in
an anechoic chamber, they use the force hammer method to obtain
the radiated field at each of 266 microphone positions situated on a
sphere of 1.2 m radius. They then averages the results (after throwing
away the phase information, of course) to obtain information about
the total radiated power, presuming that 266 is, for practical
purposes, equivalent to infinity. How good that presumption is
depends, of course, on the wavelength of the sound, which in principle
must be large compared to the spacing of microphone positions. If

it goes to the other extreme, becoming small compared to the spacing
of at least some of the microphone positions, it becomes easy for
features of the radiation pattern to “sneak through” between
microphones and thus not be detected. It would appear for the
situation of Bissinger and Keiffer that the cutoff frequency would
be somewhere in the region of a few kilohertz.

Note that any data covering more than one direction simultaneously
necessarily require throwing away phase information.

DISPLAY OF DATA
In my first research proposal to the National Science Foundation in
the field of violin physics, which I submitted in 1977, I undertook to
record detailed measurements of the radiated acoustic far-field
amplitude per unit force exerted on the bridge as a function both of
frequency and of the two spherical angles. Although the proposal
was approved a little over a year later, and a number of exploratory
measurements were done, the experiment itself was never completed
— primarily because I realized I had no good method of displaying
the results in a way that would carry visual meaning, and I was not
interested in filling my shelves (let alone journal pages) with tons of
meaningless printouts.

It should be emphasized that the importance of a good display
method is a lot more than simply saving space. After all, the scientist,
contrary to some popular opinion, is driven not by a thirst for
knowledge but by a thirst for understanding; and understanding can
only come from the perception of patterns. Such a perception, in
turn, requires data to be presented in a form that our senses can make
sense out of. In our case, this means using a three-dimensional space
(since the independent variables are frequency and the two polar
angles), somehow placing at each point of that space a mark that
contains information on two dependent variables (such as amplitude
and phase of the radiation field at some large fixed distance from
the center of the violin). It also, incidentally, requires computing
graphics power such as was not readily available in 1977.

The most recent violin results that attempt such a display are
contained in the elegant holographic work of Wang and Burroughs
[10], who supplement the common presentation methods by the
use of (a) perspective and (b) color. In principle, the first effectively
adds one dimension, allowing the use of three independent variables;
whereas the second allows each point to show three separate
dependent variables, since color is usually thought of as three-
dimensional (represented, for example, by hue, intensity, and value;
or by red, green, and blue components). In fact, however, such a use
of color would be incompatible with perspective, since the coloring
of the plane nearest the viewer would completely block anything
that is behind it.

That is not, however, in any case the scheme that Wang and
Burroughs attempt. First of all, for reasons that we shall mention in
a minute, they do not wish to limit themselves to the far-field
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radiation field, but are interested in visualizing it as a function of
radius also; in other words, they deal with three, rather than two,
independent space variables (which they choose as X, Y, and Z).
Accordingly, they are forced to abandon the frequency as a
component of the display, instead presenting a number of separate
pictures each labeled with a frequency. In their case, this does not
represent a loss, since their frequencies are determined as the
partials of a bowed string, which are in any case well separated.

Secondly, Wang and Burroughs do not present either the pressure
amplitude or pressure phase of the field but rather the intensity
vector, a quantity easily obtained if both of the more primary
quantities are known, as they surely are in a holographic experiment.
(It is not possible, however, to reverse this transformation.) They
do this both by color and by drawing arrow vectors, concentrating
on one plane at a time to avoid the non-transparency problem that
we mentioned above. The rationale behind reporting only the
intensity appears to be to look for “hot spots” which act as dominant
sources of energy (although, as the authors both indicate and
illustrate, they may sometimes be sinks rather than sources). The
implications of such “hot spots” are, however, unclear, since the
intensity vector at a point is the product of pressure and velocity
there, but it is not at all evident that the pressure at a given location
may not be caused by motion of the shell somewhere completely
different.

More specifically, in order for the velocity pattern to be localized
in some region of the shell, the size of that region must be of the
order of the wavelength of wood bending waves at the frequency in
question; whereas in order to localize the pressure in that region —
that is, to attribute the pressure to local motion — the wavelength of
sound waves must not be larger than the region. This means that the
air wavelength must be smaller than the wood wavelength, which
requires that the frequency be higher than the coincidence frequency.
If we accept Cremer’s estimates [17] for the coincidence frequency
of the violin shell as about 5 kHz parallel to the grain and about 18
kHz perpendicular to the grain, this condition is never satisfied in
the range treated by Wang and Burroughs.

FREQUENCY VS. MODE
Although historically knowledge of violin modes developed early,
it was realized only slowly that as far as understanding the vibration
of the violin system is concerned, modes are all there is. I believe that
the breakthrough came with the work of Schelleng [18], who pointed
out that the relatively high radiativity plateau between the A0 mode
and the next large peak (the B1), as contrasted with the deep valley
between B1 and B2, is due to the A0 and B1 having, in his terms,
“opposite polarity.” The terminology is, in a way, unfortunate,
because the “oppositeness” is not really a characteristic of the modes
themselves but of the radiativity of the modes when probed at a
particular point — namely at the side of the bridge (which corresponds
to the direction of the force applied by the vibrating string);
nonetheless, Schelleng’s understanding makes it clear that the plateau

is not due to any kind of “background level” because nothing of the
kind exists (other than the tails of other modes, of course). There is
no “background” because modes are all there is.

This “radically modal” point of view suggests that frequency, the
(continuous) independent variable that had always been considered
the sine qua non of responsible radiation measurements, should
really be replaced by the (discrete) variable of mode number (or,
better, mode name, since in many cases the modes do not form a
naturally ordered set). Of course mode radiation parameters are
experimentally determined by measuring things as a function of
frequency (or, in the case of impulse responses as when a force
hammer is used, as a function of time); once they have been
determined, however, we can always deduce the behavior of the
system at any given frequency from those mode parameters, the
characteristic frequency of each mode, and the strength with which
that mode is represented in the particular quantity in question. The
variation with frequency is then determined by those numbers plus
modal response functions, which are universal. (In mathematical
terms, we would say that a function is here being specified by the
location of its poles and the values of the corresponding residues,
rather than by giving the value of the function for every value of the
independent variable.)

“...modes are all there is.”

As an example, if we wished to specify the angular distribution of
radiation from a violin, which may be changing rapidly with
frequency, we would only need to describe the angular distribution
radiated by each mode, plus the strength with which that mode is
excited by the particular method of excitation used. One may remark
that the space of modes is not only discrete, but in most practical
cases there are, in effect, only a finite number of modes that
contribute to the result, so that the simplification involved in using
mode instead of frequency as the independent variable is enormous.
Bissinger [8] was the first to introduce these ideas into radiation
measurements. Even though the particular quantities with which
he deals are relatively simple in that they are averaged over angles
and so eliminate two independent variables, his papers do correctly
introduce the “radically modal” point of view, which will, I believe,
characterize all future work. A closely related, but less explicitly
formulated, approach characterizes the work of Weinreich, Holmes,
and Mellody [19], whose results, even though they are presented as
a function of frequency, call the reader’s attention primarily to the
behavior of modes. By contrast, Wang and Burroughs [10] represent
the older point of view: since their data is collected at discrete and
well-separated frequencies that have no connection to the
frequencies of particular modes, they do not allow any “natural”
interpolation of their frequency dependence which, for “radically
modal” data, can be done exactly.
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FREQUENCY CONTROL IN MEASUREMENT
In his 1928 paper, Backhaus [1] complained about the great instability
of his system when the violin string was excited electromagnetically,
presumably at one of its resonant frequencies; and we earlier
commented on the difficulty of avoiding such instability when one
is trying to sit on top of a resonance of very high Q. Although the
primitive state of 1928 electronics probably did not allow him to do
it, today that would not have been a problem: we would simply
lock the driving frequency to that of the string (for example, by
sensing the phase difference between the driving signal and the
phase of the oscillation). Exciting the string by bowing accomplishes
the same thing, since the bow does not impose its own frequency
but locks to that of the string.

Of course the radically modal point of view, which we now advocate,
would in any case seek to avoid an externally imposed frequency
regardless how stable; but the same idea of locking the drive to the
normal mode of a string can also be used to lock it to a normal
mode of the violin body (this will generally require having a few
sensors in different places on the violin whose outputs are combined
with appropriate phases and amplitudes to favor one mode over
neighboring ones). Naturally, if the aim were to measure radiation
field properties, it would be wise to choose a driving method other
than a loudspeaker, such as the method of Meyer [7] or of Dünnwald
[6]. If the signal returned by the sensors is given back to the driver in
a positive feedback loop, one is, in effect, increasing the Q of that
mode compared to any others; if the Q reaches infinity, not only
will that be the only mode excited, but it will also go into steady
spontaneous oscillation so that appropriate modal characteristics,
such as patterns of the radiation field, can be measured at leisure. In
practice, of course, it is not possible to adjust the Q so it is exactly
infinity; rather, it is necessary to adjust the feedback so Q is greater
than infinity (that is, negative), which will make the oscillation
grow. One must then also add to the circuit a soft nonlinear
saturation characteristic that will make the oscillation amplitude
reach a stable steady state (that such a method can actually be made
to work was demonstrated to me by Eric Arnold, in my own
laboratory, around 1980).

“...it is the composite “machine” of violin +
violinist and not the violin alone that is the source
of the sound.”

CONCLUSION: IS RADIATIVITY EVERYTHING?
At the beginning of this paper we pointed out that, since the only
function of the violin is to make sound, one might conclude that the
characteristics of its sound-making activity — that is, its radiativity,
when measured as a function of all relevant independent variables
— ought to, when correctly interpreted, completely determine the

quality of the instrument; and therefore people interested in violin
quality can pretty much stop measuring anything else.

The fallacy in that reasoning becomes obvious, however, the
moment we consider that the most distinguished Stradivarius or
Guarnerius is capable also of making sounds that are absolutely
horrid, as one can easily convince oneself by handing it to a four-
year-old child and asking him to play (or just imagining the
experiment, which avoids putting a very expensive instrument at
risk). The point is, of course, that it is the composite “machine” of
violin + violinist and not the violin alone that is the source of the
sound in question; and whereas it is straightforward to feed some
input in the way of printed music to this composite and attempt to
judge the quality of what comes out, in itself that provides relatively
little help to the violin maker.

That is the reason why radiativity is not everything; rather, the quality
of a violin is determined by a host of properties including not only
the input impedance at the string (which reflects in important ways
on the “feel” of the string when it is bowed) but also seemingly
primitive factors like the exact angles at which the fingerboard is
planed, which contributes to the comfort of the violinist’s fingers
and, hence, the impression that more energy can be devoted to
making beautiful music and less to fighting the violin. Indeed, it is
surely true that not all of the influences perceived by the violinist
are yet known to us, let alone understood or measured.

Nonetheless, among the properties that determine violin quality,
radiativity remains privileged: a good violinist may be able to
overcome almost any of the interactive quantities that he/she
directly senses, but if an instrument is, for example, incapable of
producing any sound above 4 kHz, there is little that even the greatest
virtuoso can do about it. That is why, in my opinion, the study of
violin radiativity will continue to occupy a central place in the
ongoing research on this most fascinating instrument.  � CASJ
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