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Abstract

Martin Schleske noted in 1996 that plate tuning hardly affected corpus “signature” mode frequencies. A simplified
heuristic mechanical sandwich (top-ribs-back) B1-ZOM model developed here attributes this lack of dependence to
rib stiffness significantly exceeding plate stiffness when the violin is glued together (consistent with a rib-plate stiffness
ratio estimate that assumed both were flat plates). Two of these corpus modes, the 1st corpus bending modes B1™ and
B1", are especially significant because they are the only corpus modes to radiate strongly in the open string pitch
region. Suggestive plate and corpus mode geometries from modal analysis data provide a plausible path toward under-
standing the dependence of the B1 modes on rib stiffness and plate modes 2 and 5. A reanalysis of Schleske’s data in
combination with VIOCADEAS data for nine violins with known plate mode frequencies uncovered a strong statisti-
cal correlation between: a) the ratio AB1/AS-2 of the frequency difference AB1 between the B1* and B1 modes and the
averaged frequency difference AS-2 between plate modes 2 and 5, and b) the B1 mode frequency ratio and AB1 (now

for 17 violins), when these are plotted vs. AB1.

John Schelleng [1] made the following some-
what casual remark in 1968:

Traditionally with tap tones, more recently
with electronic excitation, the frequencies
and character of resonances have been used
for ... [guidance during violin construction].
It seems likely that through neglect of their
geometric properties we have allowed a
source of information to go to waste.

He further stated that he was unaware of any
serious attempt to understand these geometric
properties.

Modern modal analysis techniques (com-
bined with traditional Chladni patterns,
employed extensively only since the 1960s) that
give not only the mode frequencies but also
shapes, have given us the opportunity to follow
up on his suggestion.' We will try to exploit these
geometric aspects to the fullest to extract rela-
tionships between plate mode frequencies and
shapes, commonly gathered by makers who use
Chladni patterns, and corpus mode shapes.

Specifically, we have examined—in a statistical
way—relationships between the top and back
plate modes 2 and 5 and the 1st corpus bending
modes B1 and B1* (B1 modes), suggested by a
heuristic physical model, for two entirely differ-
ent sets of experimental data.

Why do we single out just the B1 modes
here? There are a number of good reasons:

1. In the open string pitch region there are only
three to four modes that radiate strongly:
A0, the compliant wall version of the
Helmholtz cavity resonance (always impor-
tant acoustically), A1 (sometimes impor-
tant), the 1st longitudinal cavity mode that
must induce corpus motion to radiate, and
B1 and B1", the 1st corpus bending modes
(collectively labeled B1; relative strengths
vary violin to violin but at least one will radi-
ate strongly). Weak (relative) response in
this region is consistent with poor violins.

2. Before detailed knowledge of the modes was
available, one bowed violin test (Saunders
Loudness plot [2]) using a sound level meter
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always showed a large peak in loudness
called the “main wood” resonance in the
pitch region of the A-string. This peak—due
to B1 and B1*—was used by Schelleng in
scaling the violin resonance properties into
other pitch ranges (the violin octet) [3, 4].

3. Diunnwald [5] published a summary analysis
of acoustic response curves for a large num-
ber of violins of varying quality. One figure
stood out especially—a three-part plot of 10
Old Italian, 10 master violinmakers, and 10
factory violins, each subplot with all 10
response curves overlaid—showing a seem-
ing regularity for Old Italian violins that was
missing in the other groups.

4. Modal analysis provides some suggestive
geometry relationships.

An envelope version of this Dinnwald fig-
ure, with added notations based on his acoustic
characterizations, is shown in Fig. 1. What is
immediately apparent is the regularity in fre-
quency placement of B1"and B1" in the 10-Old-
Italian envelope curve. Does such B1 mode
orderliness imply some means these makers had
to get such consistent frequency placement?

If achieving Old Italian sound is important
to a modern maker, then modern violin response
curves logically should bear a strong resem-
blance to the Old Italian ones. How can this be
done? Here we address that lowest part of the
curve where the “signature” modes are always
recognizable and look only at how a maker can
approach placing B1 near 440 Hz and B1" near
520 Hz (as in the Old Italian curves—although
other choices are apropos), using just two specif-
ic bending modes of the top and back plates,
modes 2 and S.

Our presentation splits into two parts: Part I
will look at the way the top and back plate sub-
structure modes migrate to the corpus, the influ-
ence of the ribs, a hugely simplified mechanical
sandwich (top+ribs+back) model of the violin,
finding plate-corpus mode correlations using
scatter plots,” and solving trendline’ equations
to predict B1 mode frequencies in terms of mode
2 and 5 frequencies.

Part II, to be published in the next issue of
VSA Papers, starts pretty much where Part I
leaves off, but fits trendlines directly to the B1-

84

#2,5 correlations revealed in Part I. These trend-
lines allow a maker to compute B1-mode fre-
quencies given the plate mode 2 and §
frequencies. They are entirely dependent on
experimental data for 10 violins, a situation that
will naturally evolve as more mode frequency
data become available.

EXPERIMENTAL DATABASE

We will be guided by experimental data on top
and back plate modes as well as modal analysis
or other well-defined ways of determining the
corpus mode identity. We have two important
data sets to analyze to develop relationships
between plate modes and corpus B1 modes:

1. Schleske [6] in 1996 published the results of
a systematic experiment on one unvarnished
violin with neck-fingerboard, taking the top
and back plates from initially very thick to
final thicknesses in steps, at each step gluing
the plates to the ribs and determining specif-
ic plate and corpus mode frequencies. For
example, the top plate started at 88 g with-
out bassbar, and ended at 67 g with a bass-
bar, while the back plate started at 168 g and
ended at 111 g. For the top plate the steps
also involved cutting f-holes and inserting
the bassbar. Midway through the experi-
ment the soundpost was inserted and the
violin strung up.

2. VIOCADEAS® measurements on nine differ-
ent violins with known modes 2 and 5 fre-
quencies for the top and back plates [7], plus
augmentation from more recent partial mea-
surements on three Old Italian violins and
two modern violins by well-known makers.

Schleske’s experiment stands out for a num-
ber of reasons. One was the broad range, highly
systematic approach uncommon for violinmak-
ers. Another was that there was almost no
dependence of B1 frequencies on plate mode fre-
quencies. Hence, Schleske concluded that plate
tuning to specific frequencies hardly seemed
worth the trouble if the rationale for doing so
was to reach certain “target” corpus mode fre-
quencies. Given this conclusion, how are we to
address the regularity seen in the Old Italian
results of Fig. 1?
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It is a reality that resonant frequencies
depend on two basic parameters: stiffness and
mass. In this context Schleske’s experiment was
one in which the major mass components of the
corpus, the top and back plate, had their stiff-
ness and mass changed significantly, but the
assembled violin showed only minor corpus
mode frequency changes. Why? It is reminiscent
of the Sherlock Holmes case in which the dog did
not bark. In short, the ribs were neglected. For
example, adding the bassbar raised mode 5 from
308 to 373 Hz, a 21% increase, while B1 at 408
Hz moved up 1% and B1* at 529 Hz went up
2%. Why would such a large change in top
and/or back plate frequencies create such rela-
tively small B1 changes? We believe that over
such an extraordinary range of measurements
the one thing kept constant—the ribs—are not
just a significant component in the corpus-bend-
ing stiffness, but the dominant one. The problem
is how to “prove” this.

ANALYSIS PRELIMINARIES

Floppy, broken up by blocks, curvy and reverse-
curvy in shape, the ribs are a terrible mechanical
system to characterize in isolation. To attempt to
treat them like the plates, we approach the violin
in a highly generalized way, applying only the
most basic physical principles of vibrations. Our
approach is as follows:

Take a complex shape and “flatten” it. (Do
violin plates act enough like flat plates to do
this?);

Sandwich the major corpus components, the
plates, around the ribs;

Treat the ribs as a plate;

Compare the rib to plate stiffness, assuming
both are flat plates;

Create a flat plate sandwich model B1-ZOM
to aid analysis;
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Figure 1. Envelopes for Diinnwald overlays of the acoustic output of 10 Old Italian, 10 master, and 10 factory
violins up to ~7 kHz [5]. The major radiating signature modes, A0 (lowest cavity mode near 280 Hz) and the 1st
corpus bending modes B1" and B1", are labeled. The regularity of the A0, B1", and B1* envelopes for the Old Italian

violins is notable, but not for other classes.
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Allow the plates to bend in only one way along
the ribs as suggested by modal analysis for
the B1 modes (but not constrain plate motion
away from rib line);

Estimate plate-bending stiffness for each grain
direction from the plate mode frequencies
(tap tones) and plate mass;

e Estimate corpus stiffness from B1 mode fre-
quencies and corpus mass (assume rib assem-
bly mass = 50 g); and

Estimate rib stiffness for each B1.

Does a Violin Plate Act Like a Flat Plate?

The first step in the process is to see how much a
violin plate behaves like a flat plate, which has a
frequency of vibration directly dependent on its
thickness h (always much less than the length or
width of the plate). This will show up as a
straight-line behavior when frequency is plotted
vs. thickness on a scatter plot.

Schleske’s data for the back plate in succes-
sive thinning stages are a convenient starting
point. The original plate thickness was 5 mm,
uniformly graduated. Successive thinning stages
were not necessarily uniform so it was assumed
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that the mean thickness could be computed from
the plate mass m divided by the original plate
mass of 168 g, or h(mm) = m/168 x 5 (back
plate). Figure 1 shows a scatter plot of back plate
mode frequencies vs. mean plate thickness h.
Similar mean thickness relationships were used
for the top plate, but the insertion of the bassbar
makes this data sequence much different than
for the back plate, since it is essentially broken
into two sequences. The plot of the top plate
data is also shown in Fig. 2 and the pre- and
post-bassbar points are differentiated.

Of course, violin plates are really three-
dimensional “shells.”’ This means that if you push
straight down on a plate lying on a table, the plate
edges extend outward. This horizontal motion
reflects the additional extensional character of
shell vibrations that comes right along with the
flexural behavior characteristic of flat plates. It is
important to note that the flexural behavior of a
surface is what produces sound; extensional
motion can only end up as heat.

How do we determine whether extensional
or flexural shell behavior predominates in a vio-
lin plate? The short answer is to thin it in stages
and plot the mode frequency vs. mean thickness

500 + back plate
5

400 |

300

2
200 /

100 |

mean thickness h(mm)

Figure 2. Scatter plot of mode 1, 2, and 5 frequencies vs. plate mean thickness (Schleske data [6]) for top (left) and
back (right) plates. In the top plate figure pre-bassbar points are shown with yellow fill color (mean thickness with
bassbar-in computed from overall mass). The data patterns for back plate modes 1, 2, and 5 look like straight lines,
so linear trendlines were computed and are shown superimposed on the data (all r > 0.98, indicating good reliabili-
ty). Note that the frequency differences between modes 2 and 5 also follow a linear trend (but top plate data must be

separated into pre- and post-bassbar sets).
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in a scatter plot, just as in Fig. 2. If the straight-
line fit equation gives a zero intercept (anything
within +10 Hz is “zero”) when h = 0, the mode is
primarily flexural in character. On the other
hand, if the intercept frequency is more than 20-
30% of the mode frequency there is a significant
extensional component along with the flexural.
As an example, using the straight-line fits in Fig.
2 (back plate only) for mode 2, f = 49.9-h - 7.7,
while for mode 5, f = 65.0-h + 119. Since mode 2
has essentially a zero (7.7 Hz) intercept, it is pri-
marily a flexural mode, while for mode 5 the
intercept is 119 Hz—36% of the mode 5 fre-
quency—and there is clearly lots of extensional
behavior in this plate mode.

The top plate, with f~holes cut out and bass-
bar inserted, is more complex, but it shows sim-
ilar trends pre- or post-bassbar.) Note that the
mean thickness with bassbar-in was computed
from overall mass, a practical and reasonably
plausible way to take the bassbar into account.)
However, the bassbar clearly affects mode §
much more than mode 2, as expected, since this
mode flexes the plate across the grain. Mode 2
flexes the plate along the grain, in a direction
perpendicular to that for mode 5, and thus is rel-
atively unaffected by the bassbar. For our pur-
poses, violin plates seem sufficiently
flat-plate-like to apply some highly simplified
mechanical modeling. We next address arching
effects in the context of achieving certain mode
frequencies.

Does the Arching Make Any Difference?

If all we care about are plate mode frequencies,
then arching is not important. There is ample
range to thin plates to achieve a traditional fre-
quency. If we care about mode shapes, then there
is empirical evidence from the experiment that
we discuss below to answer this question. If we
want to know how arching affects violin tone
and the way a violin radiates sound, then the
answer is that we know it does, but we will not
address that matter here.

Suppose archings were changed from low to
high and curved to flat. Would this affect our flat
plate assumption? This question has been
reduced here to: Would the arching affect the
mode shapes that we will use in relating free
plate modes to assembled instrument modes? A

30-year-old series of experiments on bassbar
tuning in plates with widely varying arching pro-
vided a check on how arching affects mode
shape and frequency data [8]. Pictures of modes
2 and § for 10 different plates were so similar
that it was impossible to relate a Chladni pattern
to the arch. (Five photo examples of each of
these modes are shown in Fig. 3, along with a
cross section of various archings employed for
specific plates.) Based on these experimental
results we are going to assume plate arching is
not an important consideration in whether
modes 2 and 5 will appear at any particular fre-
quencies, or whether they can be treated as
approximately flat-plate bending modes.

THE B1 ZEROTH-ORDER MODEL

Schleske had concluded from his experiment
that plate tuning hardly affected corpus signa-
ture mode frequencies, and hence the rationale
behind free plate tuning was questionable. Of
course, his data do show that thicker plates give
higher corpus mode frequencies—as they
must—ijust that corpus frequency changes seem
much diluted. It is a basic tenet of modal analy-
sis that substructures assembled into structures
carry their mode parameters into the whole in
some form, adding modes to the conglomerated
structure and thereby increasing the overall
mode density (= #modes/frequency interval) of
the structure. Since plates are the major sub-
structures in the violin corpus, and plate modes
2 and 5 are among the lowest frequency ones, we
would expect the strongest relationships to be
with the lowest corpus modes.

The ribs are tough to handle since their
mechanical stiffness properties—thin and floppy
in isolation, with blocks of various shapes inter-
rupting the ribs—change so dramatically when
glued to the plates. What is clear, however, is that
bending the plates must bend the ribs (any shear
effects will be neglected completely). Since ribs
are also quite high relative to plate thickness, and
we know that in a plate the stiffness will vary as
thickness cubed, we have reason to believe that
ribs, in addition to their cavity-forming duty, can
contribute significantly to the corpus stiffness. Of
course, since the ribs are glued to the plates their
stiffness must, to some extent, depend on the
plate stiffness, but this complication will be
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addressed when we reach it.

At this point, we attempt to make this hand-
waving a bit more formal for the 1st corpus
bending modes only, in what we will refer to as
the B1 zeroth-order-model or B1-ZOM for
short. In physics, a first-order model implies
neglecting a lot of details, which will then be
treated in a higher-order model. In the B1-ZOM
details are trashed immediately with no hope of
reclaiming them later, e.g., ribs = flat plate, no
arching, no corpus modes but B1" and B1*, no
plate modes but 2 and 5, no distinction between
boundary conditions (free-free for plate modes
and presumably simply-supported for the same
plates in the corpus modes B1 and B1*). Such
enormous simplifications provide us with a
mainly conceptual model that sometimes sug-
gests an experimental test as in Fig. 2. Usually we
will have to be satisfied with statistically signifi-
cant correlations between one parameter and
another, which is where the scatter plots will
come in. In short, this B1-ZOM is a heuristic
model based on plausible arguments that we
hope can be supported by results; it is 7ot to be
confused with a real physics model of the violin.

Plain Geometry

To set the stage for the B1-ZOM, we refer back
to typical nodal line patterns for modes 2 and §
in the top plate in Fig. 3. These plates had very
widely varying archings but similar nodal line
patterns, indicating that arching does not change

curved (low) 14 mm high: J

e e Y
curved (normal)16 mm high: A,B,C,D,F,.H
e — ..
curved (high) 20 mm high: G

e ey
flat (low) 14 mm high: E

e — i T
flat (high) 17 mm high: K
P .

the basic patterns. With these shapes in mind,
look at the measured corpus bending modes
shown in Fig. 3 compared with the free plate
modes 2 and 5 in Fig. 3. The side-view modal
analysis results for the B1 mode ribs, compared
to side-view results for free top and back plates
mode 5, show unmistakable common bending
behavior along the rib line. That same bending
behavior can be seen for mode 2 (back plate
only), also shown in Fig. 4.

The geometries in Fig. 4 suggest treating the
violin corpus as a dynamic wood sandwich
where top and back plates act as bread to the
ribs’ meat, leading directly to the B1-ZOM
sandwich version of the violin corpus. Corpus
modal data with the top and back plate nodal
lines, as shown in Fig. 5, were metamorphosed
into a flat-plate version where the top, ribs, and
back are all sandwiched plates required to bend
from the rib side as shown in Fig. 4. Note that
this condition does 7ot force the center of the
plates to bend the way the ribs do.

B1-ZOM Corpus Stiffness

A schematic version of Fig. 5 is shown in Fig. 6,
where the plate sandwich was used to create a
mass-spring analog good only for the B1 modes.
Since a mass-spring system has a frequency com-
puted from f = (K/M)"* /27, the measured plate
frequencies and masses were used to make a
crude estimate of the individual plate stiffnesses.
The overall stiffness (just B1 modes!) is the sum

top plate mode #5 (~330 Hz)

Figure 3. Five (out of 10) individual plate Chladni-pattern nodal line patterns for mode 2 (top right: nominally 180
Hz) and mode 5 (bottom right: nominally 330 Hz) for a wide range of arching (left) from low curved to high flat.
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of the top, rib, and back stiffnesses: K = Kt + Kg
+ Kg. Similarly, the corpus mass M = mt + mg +
mp. Furthermore, since Fig. 5 shows different
top and back plate flexures for each B1 mode,
the respective top and back plate stiffnesses must
reflect this detail.

No rib mechanical property information
was gathered in the VIOCADEAS measurements
except for the CT scans, which did not have suf-
ficient resolution (pixel dimensions = 0.6 mm) to
really get accurate thickness or density from per-
pendicular slices. (Analysis of diagonal views
has not been done at this stage.) Other than not
being too thick or thin, with the curl matching
that of the back plate, ~29-31 mm high, etc., the
working characteristics of maple ribs seem to be
based mostly on appearance. Hence, a “rib”
mass was taken for a “typical” violin as nomi-
nally 50 g, with ~30+% from the ribs proper.
This total value was used for all the Schleske and
VIOCADEAS data analysis. Since different mak-
ers make different choices for those subsidiary
parts that make up the “ribs,” it is probably safe
to assume that the so-called rib mass—and com-
puted stiffness—will vary from maker to maker.
Building rib assemblies in a consistent way is a
good way to understand systematic trends.

If the rib stiffness were actually larger than
the top and back plate stiffnesses together, then
the insensitivity of the B1 modes to plate thick-
ness changes is a straightforward consequence of

the usual equation relating mass and stiffness to
resonance frequency. To estimate rib stiffness we
exploit the geometry shown in Fig. 5. B1" was
assumed to have the top plate motion looking
like plate mode 2 and the back like mode 3,
while B1* has the top motion like mode 5 and the
back like mode 2. These bending geometries sug-
gest specific stiffnesses for the sandwich compo-
nents: as an example, for B1 fr, = (Kr2/mT)"*/21
was used to estimate Kty from mode 2 for the
top. Similarly, Kgs was computed from mode 5
frequency for the back and K- from the corpus
B1 frequency and corpus mass; for B1* Krs was
estimated from mode 5 for the top and Kg; from
mode 2 for the back and K+ for the corpus from
B1". In both cases the rib stiffness was estimated
from K = K - K3 - Kt. Rib stiffness results from
this B1-ZOM analysis for steps 4c to final step
14f are shown in Fig. 7, along with plate stiffness
estimates for comparison. A logarithmic plot
was used to see plate stiffness variations on the
same scale as the rib stiffness variations.

Figure 7 gives some insights into the relative
stiffnesses of the various corpus components and
their evolution as the plates are thinned. Note
that top plate stiffness is not as large as back
plate stiffness due to the plate mass difference,
not to the mode 5 frequency difference. Rib stiff-
ness exceeds individual plate stiffnesses from
step 6¢ onward, culminating at step 14f with rib
stiffness considerably larger than the sum of

B corpus B1” OV o B
[ . —_—
e~ 1 | _______.A—‘”"
corpus B1*
G
= back plate
. mode #5 =
=

Figure 4. Left: Experimental modal analysis results for the B1 modes showing side view of rib bending as well as

mode 5 for top and back plates. Right: Back plate mode

2 showing bending in the C-bout region similar to mode 5.
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S

-

Spruce

Figure 5. Left: Violin modal analysis results for B1" and B1* showing top, ribs, and back (nodal lines superimposed
on top and back). The nodal patterns are strikingly suggestive of modes 2 and S in the free plates (especially for the
top plate, the back mode 2 is often more like two “V”s inverted at either end); Right: B1-ZOM flat plate sandwich

analog.

plate stiffnesses. The effect of thinning the back
plate on rib stiffness estimates is somewhat easi-
er to follow since it did not have the complica-
tion of bassbar insertion. Going from step 9f to
14f (after bassbar, soundpost insertion, string-
ing-up), estimates of Kg_changed by <1%, while
Kg, dropped by 16%. For B1, compare this to a
25% drop for the top plate Kt and 39% for the
back Kg_, while for B17, the top Kr, dropped by
24% and the back Kp, by 46%. A plausible
explanation for the difference is the much small-
er top plate stiffness for in-out rib motions on

the side of the violin. Although these stiffness
estimates are quite crude, they are consistent
throughout the steps, arguing for both Ky and
KR, being nominally constant after the instru-
ment was strung up (steps 9f-14f) in support of a
basic assumption that rib stiffness did not
change during this experiment. Of course, gluing
ribs to plates means that plate stiffness must in
some way affect rib stiffness (and conversely).

Are the Ribs Really that Stiff?

Figure 7 clearly shows that rib stiffness domi-

F(t)

Figure 6. B1-ZOM corpus sandwich model and its corresponding mass-spring analog for the B1 modes.
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Figure 7. Logarithmic plot of B1-ZOM stiffness estimates for top and back plates Kt and Kg, and ribs Ky for BI°
and B1" as violin plates were stepped through various plate-thinning steps, plus bassbar, soundpost insertion, and

stringing up operations, in Schleske’s experiment [6].

nates overall corpus stiffness. Is this reasonable?
An independent check on this result comes from
simple flat-plate equations. If a flat plate is load-
ed at the center by a force F and bends an
amount x, its stiffness k = Ewh’/DL’, where E is
Young’s modulus, w is the plate width, h is the
thickness, L is the length, and D depends on
where the force is applied. Choosing nominal
values for these parameters (plate bent perpen-
dicular to plane, ribs bent in-plane),

e Plates: h =3 mm, w =200 mm, L = 350 mm,

e Ribs:h =30 mm, w=1mm,L =350 mm (the
ribs are rotated 90°),

and assuming the same materials throughout so
that E is the same for all, the ratio of rib to plate
stiffness cancels out E, D, and L. Thus, we end up
with a ratio Kyips/Kplates = 5. This is quite near the
ratio from Fig. 7 when the top and back plate
stiffnesses are averaged. This simple calculation,
in which the cube of the 30:3 thickness ratio
overcomes the 200:1 width ratio, supports the

contention that the ribs are really dominant in
bending mode stiffness. Of course, our assump-
tion that the ribs bend in-plane is reasonably
close to what we observe—Dbut not exactly.

What the Ribs Do

VIOCADEAS modal analysis animations gener-
ally showed that rib motions at the top plate for
B1 were larger than at the back plate, while the
opposite was true for B1". They also showed that
the ribs toed in on the top plate and out on the
back for B1°, while reversing this behavior for
B1°, consistent with the plate modes switching.
This means that the assumption of the ribs bend-
ing in-plane is only approximately true.

An interesting effect (not yet understood)
was the difference in rib stiffness trends, with Kg.
increasing until step 9s (soundpost inserted),
after which it remained the same, while K, gen-
erally decreased overall, dropping 25% from
step 1c to step 14f. Both rib stiffnesses showed an
increase when the soundpost was inserted, pre-
sumably reflecting increased corpus stiffness
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from coupling of the top and back plates. The
soundpost-stiffening effect is readily seen in the
frequency rise of A0 when the soundpost is
inserted, due to cavity wall stiffness increasing,
and also in small, generally upward corpus mode
frequency shifts [9].

Similar stiffness analysis was applied to
three VIOCADEAS violins with known plate
mass and mode 2 and 5 frequencies. These rib
stiffness estimates are shown in Fig. 8, which is a
plot of estimated rib stiffness vs. top and back
plate stiffness for B1 and B1". Also included are
the Schleske data from Fig. 7 to compare the
effect of plate thinning on one violin’s rib stiff-
ness with final violin results. Figure 8 shows
again that B1" rib stiffness is more sensitive to
back and top plate stiffness variations than B1".
Note also that stiffness of the top is much less
than that of the back for B1", whereas for B1*
they are much closer, as expected from the basic
grain-direction-dependent spruce and maple
stiffness properties (see Fig. 5). Not surprising,

there is good agreement between both data sets,
although individual maker’s choice of woods
and construction techniques can cause signifi-
cant differences in the rib stiffness.

These estimates of the plate and rib stiffness-
es indicate that the finished violin has most of the
overall corpus stiffness in the ribs for both Bl
modes: more than 60% for B17; >80% for B1".
Overall, high rib stiffness explains the insensitiv-
ity of the B1 modes to changes in the plate mode
frequency because rib stiffness dominates the
overall stiffness in the equation for resonance fre-
quency. Rib stiffness should dominate corpus
stiffness in violins with traditional construction.
If the estimates of rib stiffness had been very close
among all four violins, we could argue that rib
stiffness be considered constant and set equal to
the average for each B1 mode. Figure 8 argues
they are not constant, although they are fairly
close to one another. Since rib stiffness dominates
corpus stiffness, and it varies from violin to vio-
lin, applying the B1-ZOM model directly to a
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Figure 8. B1-ZOM estimates of rib stiffness (assuming rib mass = 50 g) vs. top and back stiffness (see plate nota-
tions) for B1™ (lower region) and B1* (upper region): 1) for three VIOCADEAS violins with known plate masses and
mode frequencies (B1: O; B1*: @), and 2) Schleske’s sequential results from steps 9f-14f after f-holes, bassbar,
soundpost and stringing up (B1: [, B1": W). Rib stiffness was insensitive to plate thinning for B1', whereas B1" rib
stiffness dropped ~16%. VIOCADEAS B1 results were slightly higher and scattered and showed opposite trends
between top and back, whereas B1" rib stiffness trends were similar to Schleske’s results [6].
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violin with rib stiffness assumed as constant does
not seem useful.

At this stage it is clear that we must adopt an
alternate strategy to develop a reasonably clear
logical path from plate mode frequencies to B1-
mode frequencies. The first step follows the B1-
ZOM path a little further to see what we can
mine from it. The second is to look directly at all
of our plate and corpus data, and to work on
trendlines extracted from fits to the actual data,
possibly guided by the B1-ZOM (to be included
in Part II).

B1-ZOM and Plate Modes 2 and 5

Schleske’s data provide an insight into rib stiff-
ness that the more usual whole-violin—free-plate
vibration measurements cannot. Yet the same
basic physical mechanisms still hold for any
playable violin. Consider the heuristic B1-ZOM
equations with specific contributing modes 2
and 5 plate stiffnesses for B1" and B1": Kpy. =
KT2+KB5+KR_ 5 KB1+ = KT5+K132+KR+. If we com-
pute the frequency difference AB1 = B1"- BT,

ABT = (172m){[(Krs+Kpa+Kg.)/M]"
- [(Krp+Kps+Kr )/M]™). (1)

We assume that Ky is approximately the
same for each B1 (actual 4-violin average:
Kp1./Kpi- = 1.6+0.3) and that Ky is much greater
than Kt + Kp (not really true for B1", but neces-
sary to do some simplifying math). Then we can
write (we drop some numbers like 21 after
manipulation for convenience and use the
“varies as” symbol oc),

AB1 o< (1/KgM)" [ (Krs - K12) - (Kps - Kga) ]-(2)

Equation (1) suggests that AB1 depends primar-
ily on the rib stiffness, so that if the plates
become very thin and rib stiffness truly domi-
nates corpus stiffness, AB1 approaches a con-
stant value given by AB1 = [(Kg, - Kg.)/M]"*/2T.
Equation 2 suggests that AB1 depends in some
way on mode 5—mode 2 stiffness differences. If
these go to zero, so does AB1, but this is possible
only if plate thicknesses go to zero (see Fig. 2) or
if K15 - Ko = Kps - Kgo. (Here 1s where reality
intrudes somewhat. Kg cannot be the same for
the two B1 modes. If it were, B1* would be the

lower frequency mode because the term inside
square brackets [ | in Eq. (2) would be negative!
See Fig. 7.)

Schleske had clearly shown that B1-mode fre-
quencies were not very sensitive to the plate mode
frequencies themselves, and we have seen that
dominant rib stiffnesses in the B1-ZOM can
explain this insensitivity. However, taking B1 cor-
pus mode frequency differences points toward
possibly a better way to understand how plate
modes 2 and 5 really affect these mode frequen-
cies, as suggested by Eq. (2). AB1 will now be
treated as if it were sensitive in some way to dif-
ferences between mode 5 and mode 2 frequencies
in the top and back plates! Procedural hints from
these equations led to what seemed to be a million
“scatter” plots—mercifully glossed over here—
before finally finding one showing a meaningful
correlation between modes 2 and 5 and the Bl
modes. (The whole procedure was quite mindful
of what J.R. Oppenheimer [10] described as the
“bumpy contingent nature of the way in which
you actually find out something” in science.)

The obvious scatter plot of AB1 vs. AS-2 for
Schleske’s data showed 7o significant correla-
tion (AS-2 is just the average difference between
the free-plate mode 5 and mode 2 frequencies—
obviously no rib effects here). However, a strong
correlation was found between the ratio
AB1/A5-2 vs. AB1 (but not vs. A5-2) as shown in
Fig. 9. This scatter plot covers the entire Schleske
experiment, including cutting f-holes, inserting
the bassbar and soundpost, and stringing up the
instrument. Figure 9 indicates that from step 1
before the f-holes are cut in the top plate up to
the bassbar insertion step (step 9) there hardly
seems to be a discernible pattern. But after inser-
tion of the bassbar, soundpost, and stringing up
the violin, the scatter plot also shows that the
data points from steps 4 to 14 form a much more
regular pattern if steps 1 to 3 are neglected.

We consider any regularity in quantitative
analysis of violin data to be “interesting.” Will
the regularity seen for plate thinning (steps 9 to
14) in Fig. 9 also be seen for the nine different
violins in the VIOCADEAS data where plate and
corpus mode frequencies also were known? Fig-
ure 10 shows such a scatter plot with the VIO-
CADEAS data inserted. Remarkably, the data
for the nine separate violins share the same regu-
larity in AB1/A5-2 vs. AB1 as for one violin
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undergoing extensive plate thinning.

Two 2nd-order polynomials were chosen as
trendlines because a slight bend was seen in the
pattern, one constrained to go through zero
when AB1 = 0, and the other one not. A straight
line was also a plausible choice here in terms of
trends, but if the straight-line intercept were zero
or very close, then the slope m = constant = 1/AS-
2. However, the experimental A5-2 data ranged
from 159 to 203 Hz, hardly constant. There
were also mathematical complications arising
from solving simultaneous equations (using a
later trendline equation for the frequency ratio
of the B1 modes) that gave non-physical results,
so it was dropped. The two 2nd-order polyno-
mial trendline fits through all the data are shown
in Fig. 10. The large correlation coefficient r =
0.95 indicates a reliable trendline.

It was surprising to find any strong relation-
ship between plate and corpus mode parameters
even for the few modes we have worked with.
Quantitative relationships, such as suggested by
the pattern seen in Fig. 10, are really quite

scarce. Often in retrospect some are not what
they originally seemed, e.g., the violin octet scal-
ing procedure of Schelleng (which completely
neglected the ribs!) used a nominal factor of 1.5x
to scale the top-back plate tap tone (mode 5) fre-
quencies to the “main wood” frequency. The
Schleske data show this ratio starting at 1.23
and increasing to 1.37—an 11% increase—from
steps 4 to 14, and that plate mode frequencies
themselves seemed little related to corpus mode
frequencies. Given the insensitivity of the B1
modes to plate tunings, this 1.5x factor seems
somewhat fortuitous. Schelleng did not mention
this factor in his scaling paper [3] nor did
Hutchins in her violin octet history paper [4] or
any other paper. The sole exception is a one-sen-
tence remark in a 1967 Physics Today magazine
article by Hutchins [11] about the main body
resonance of a completed violin being approxi-
mately seven semitones above the main free-
plate resonances. Other than Schleske’s
research, no other research addressing this rela-
tionship was found. Of course, if you are an
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A5-2 I _ .
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Figure 9. The ratio of frequency differences between the B1 modes AB1 and the plate modes 5 and 2 A5-2 vs. AB1
(Schleske’s data steps 1c to 14f [6]). Steps 1-3 indicate earliest stages (no top plate mode 5 seen), steps 4-8 are for
plate thinning, step 9 covers bassbar-in to soundpost-in to strung-up, then steps 10-14 again return to plate thinning.
(Size of data points indicates approximate experimental errors in frequencies; internal numerals are step numbers.)
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Figure 10. VIOCADEAS data for nine violins (red squares) added to Schleske’s data [6] for one violin (steps 4-14
only). Two 2nd-order polynomial trendlines were applied to the data in a spreadsheet (both with correlation
coefficient r = 0.95, indicative of a good fit) have been fit to this data: 1) AB1/AS-2 = 3.0527 x10° AB1* + 5.3741
x107 AB1 (with equation constraint AB1/AS-2 = 0 at AB1 = 0; solid blue line), and 2) AB1/AS-2 = 2.0481x10° AB1?
+2.1249 x10” AB1 + 0.14S5 (orange dashed line). (Note that this regularity does not show up in a AB1/A5-2 vs. AS-2

plot.)

optimist, how can you miss getting this ~1.5x
factor if plate tunings do not strongly affect the
final B1 frequency?

It is important to point out again that the
regularity seen in Fig. 10 shows up for plate
mode frequency differences only, presumably
because generally the ribs so dilute the trends
that the typical data scatter then buries real
trends. This may be the first observation of a sta-
tistically strong relationship between plate and
corpus mode frequencies. (But violinmakers,
being somewhat secretive about what works for
them, maybe just have not divulged such infor-
mation.)

B1-ZOM—Another Equation

There is another crucial step required before we
are able to start with plate mode frequency dif-
ferences and end up getting B1 mode frequen-
cies. We cannot get B1* and B1™ from just the
frequency difference; we need one more equa-

tion, i.e., two unknowns need two equations for
solution. Returning to B1-ZOM, note that a
ratio of B1* to B1™ frequencies, Ry, cancels out
the total mass, a helpful simplification. Our
equation then is just

Rpi = (Kp1./ Kp1.) ? (3)

= 1.61/2{1 +0.5 [(KT5 + KBZ)/KR+
- (K12 + Kps)/Kgr.|}, (4)

where Eq. (4) assumes rib stiffness is much
greater than the sum of plate stiffnesses (good
for B1* but not as good for B17). Again, if the B1
rib stiffnesses were approximately the same, we
would end up with a A5-2 parameter in Rp;.

A positive frequency difference between the
B1 modes obviously requires the frequency ratio
Rpi to be >1. By the same token, no frequency
difference means that the ratio must be exactly
1. The constraint Rg; = 1 at AB1 = 0 was used in
the polynomial fit to the experimental data.
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Since we no longer require top and back plate
mode frequencies, the data pool expanded to
include 17 violins, including two by Stradivari
and one by G. Guarneri del Gesu. Plotting Rp;
vs. AB1 gives us the plot shown in Fig. 11. Here
there can be no doubt of the link between the B1
frequency ratio and the frequency difference.

The data in Fig. 11 quite closely follow the
polynomial trendline, although one point seems
to deviate significantly more than the others.
Closer investigation revealed that this particular
instrument had an extraordinarily high bassbar
for a violin formed after traditional patterns (see
Fig. 11 inset). (It was from the University of Cam-
bridge set of six violins built by David Rubio
under the guidance of Jim Woodhouse [12];
modes 2 and 5 were matched at ~190 Hz and
~366 Hz respectively, in top and back plates, and
mode 2 in the top plate was ~2X mode 1.) An
extra-high bassbar will raise the mode 5 stiffness
relative to mode 2, and since this mode 3 stiffness
dominates the top plate motion for B1*, while the
back plate mode 5 stiffness dominates for B1, it
perhaps is no surprise that the B1"/B1" ratio is
higher than usual. It seems reasonable to assume
that trends seen in our violin data pool were only
for the more traditional violins, with traditional
dimensions for the various substructures, plates
tuned in traditional ways, built with traditional
materials and construction techniques, until
proven otherwise. Non-traditional instruments
need not apply—yet.

Getting B1 Mode Frequencies from Plate
Mode Frequencies via Trendlines
Seemingly, Fig. 11 combined with Fig. 10 gives
us all the information that we need. If we pre-
sume that the frequencies (and plate masses) of
plate modes 2 and 5 are known, we can proceed
from these frequencies via the two trendline
equations to get estimates for B1 and B1":

the AB1/A5-2 equation relates AS-2 to AB1;
the Ry equation relates AB1 to Rpy;

Rpi— 1 = AB1/B1;

so B1 can be linked to AS-2; and

B1*=B1 + AB1.

ke

The simultaneous solution of our two trendline
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equations then allows us to plot predictions for
B1, B1*, and AB1 vs. A5-2 along with all the
available experimental data in the scatter plot
shown in Fig. 12. Clearly, these trendline equa-
tions, while giving ballpark values, are not very
accurate representations of the experimental
data. Such results just underscore our cautions
about trendline equations not being based on
fundamental physics. Rather, they are only sta-
tistical correlative equations guided by our
heuristic approach. The choice of mathematical
equation fit to the experimental data is some-
what arbitrary, and constraints generally help—
the unconstrained Fig. 10 trendline (not used in
Fig. 12) gave much poorer results. With a heuris-
tic model there is no physics-based equation we
can use with the data. However, the regularities
shown in Figs. 10 and 11 still hold since they are
based on actual data and not trendlines. Hence,
the values read from each plot—noting the data
spread for any one AB1, especially in Fig. 10—
can be used to estimate the B1 mode frequencies
and provide some reasonable estimate of the
error accompanying the calculation of each.

How Does AB1 Change as B1 Mode
Frequencies Increase?
First we will clean up some ambiguity in Figs.
10-12 directly. Does AB1 increase or decrease as
B1 mode frequencies increase? From a plot of
the Schleske data in the final strung-up stages
(steps 9 to 14) plus the nine-violin VIOCADEAS
data for AB1 and B1* vs. B1™ frequencies in a
scatter plot in Fig. 13, it is clear that AB1 gener-
ally decreases as the B1 frequencies increase.
Can B1-ZOM Eq. (1) help us understand
this behavior? If we assume that rib stiffnesses
are essentially constant although different, as
plate thickness increases, the frequencies of
modes 2 and 5 increase and B1 frequencies
increase also. Thus, each term in Eq. (1) increas-
es as expected. But using Fig. 7, while the rib
stiffness Kgr, > Kg., the summed plate B1" stiff-
nesses K, + Kgs is greater than that for B1", Krs
+ Kpa. So, as plate thicknesses increase, the plate
contribution in the second term grows faster
than that in the first term, decreasing the differ-
ence between terms, and decreasing AB1. So yes,
B1-ZOM does anticipate the trends seen.
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Figure 11. Ratio of B1 frequencies Rp; vs. the difference in B1 frequencies AB1 for finished, set-up violins. The 2nd-
order polynomial frequency trendline was generated only for the constrained case where the intercept was fixed at 1:
Rp;=3.129x10°-AB1* + 1.927 x 10° - AB1 + 1 (r = 0.99). The plot includes two bent-wood ([]) and three Old
Italian violins (O). The one violin that deviated conspicuously from the trendline had an extraordinarily high
bassbar (see CT scan insert with standard bassbar for comparison).

SUMMARY

The B1-ZOM equations and suggestive para-
metric dependences derived from them have cul-

minated in a not very impressive linear trendline 3.

representation of the B1 data vs. AS-2. In Part II
of this analysis we will work directly with the B1
data and AS-2 to attempt to take advantage of
the observed significant correlations. However,
it is important to summarize our progress at this
point:

1. The Schleske experiment clearly showed that
the long-term neglect of the ribs’ important
contribution to the overall vibrational prop-
erties of the violin was unwarranted. The
fundamental reason that tuning plate modes
to particular frequencies fails to ensure that

B1 corpus mode frequencies will fall at par- 4

ticular places is the dominant role of the ribs
in the bending mode stiffness.

2. While arching is important to violin radia-

tion, all 17 violins tested to date show all the
signature vibrational modes, irrespective of
arching or quality.

Suggestive plate mode geometries led to a
heuristic flat-plate-sandwich physical model
of the violin—the B1-ZOM—to analyze fre-
quencies of the 1st corpus bending modes
and their dependence on plate and rib stiff-
ness contributions. The B1-ZOM: a) pro-
vides estimates of rib stiffness compared to
plates, b) predicts that thinning plates will
have a progressively diminishing effect on
B1 frequencies, in agreement with Schleske’s
experimental results, c) suggests that AB1 is
related to AS-2, and d) guides us to why AB1
decreases as the B1 frequencies increase, in
agreement with experiments.

Estimated rib stiffness depends to some
extent on plate stiffness, primarily that of
the back plate.
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Figure 12. Trendline predictions for B1', B1* and AB1 vs. AS-2 along with nine VIOCADEAS and two Schleske [6]
data points. The lines show simultaneous equation solutions from AB1/A5-2 (Fig. 11, constrained equation) and
B17/B1" (Fig. 12) trendlines. The red-coded points are for the violin with an extra-high bassbar.

5. The AB1/AS-2 ratio shows an empirical reg-
ularity when plotted vs. AB1 for one assem-
bled violin at various stages of plate thinning
(after f~holes are cut), bassbar and sound-
post insertion, and strings tuned, and this
regularity holds for nine other finished vio-
lins.

6. After two centuries of scientific analysis of
the violin, any quantitative relationship
between violin substructures and the assem-
bled structure is surprising and thus impor-
tant.

7. The B1*/B1" frequency ratio shows a strong
dependence on AB1 and a reliable trendline,
as expected.

8. Trendlines from AB1/AS5-2 and B1*/B1" vs.
AB1, solved simultaneously, can be used to
predict—although not very accurately due
to trendline equation choice—B1°, B1*, and
AB1 from the average difference AS5-2
between the frequencies of plate modes 2
and S.
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REQUEST FOR DATA

Before publishing Part II, I would welcome
emailed data sets (spreadsheet or organized text
digital format) from willing makers that include
plate mode 1, 2, and 5 frequencies and plate
masses, as well as B1 mode frequencies (and any
other signature mode frequencies measured reli-
ably) and rib assembly masses (optional if you
are close to 50 g). Individual maker’s data would
not be identified, but the maker would be
acknowledged. When Part II is submitted to the
VSA Journal, 1 would in turn provide an anony-
mous-pool spreadsheet for those who do submit
data, including all data to that date, with some
analysis and graphics included.
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Figure 13. Bl-mode frequency difference AB1 (lower data points) and B1" mode frequency (upper data points) vs.
B1" frequency. Linear trendlines are shown for both data sets. (Filled points are VIOCADEAS data; unfilled points
are Schleske data [6] for an unvarnished violin after f-holes, bassbar, soundpost, and stringing up.) Also shown for
reference is a straight line representing B1" = B1" + 84 Hz, i.e., a constant AB1 line (84 Hz from lowest B1 values) to
make it more obvious that the spread in B1 frequencies is really decreasing slowly as B1" increases.

bridge collection of violins made by David
Rubio and good discussions about violin
physics, including the contents of this article.

NOTES

1. Modes: A brief clarification about modes vs.
“normal” modes: A mode of vibration is a par-
ticular way an object has of vibrating. A certain
shape (= motion profile) at a certain frequency is
normally used to characterize a mode. We often
consider a Chladni pattern of free-plate vibra-
tions at a particular frequency as a convenient
way to characterize mode shape, but it only
defines the places where the plate has minimal
(possibly zero) motion at a certain frequency. A
“normal” mode shape is a bit—maybe a lot—
different from a Chladni pattern, because it is
the result of excluding the influence of all other
modes during the analysis. The “normal” label
means that there is a certain mathematical oper-
ation performed, while creating each mode

shape from experimental data, that renders each
mode independent of all the other modes. An
analogy in a three-dimensional frame might be
walking parallel to one wall in a rectangular
room; this does not change your distance from
that wall or the floor, just from the perpendicu-
lar wall. Perpendicular to the surface motion
means “normal” to the surface in the usual
mathematical terminology. Note that a finite-
element simulation based on a solid model with
reliable material stiffness and density properties
with zero damping creates normal modes natu-
rally because there is no response overlap that
could intermix normal mode shapes at interme-
diate frequencies. These finite-element calcula-
tions should target individual experimental
normal mode results to ensure that the material
properties are reliable.

2. Scatter Plot: A scatter plot created in a spread-

sheet is a very rapid and convenient way of
determining relationships between parameters.
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If parameter A is plotted vs. parameter B and an
obvious pattern shows up in the scatter plot, it
implies a relationship, whereas a point spray
does not. Various trendlines (see Note 3)—
straight, curved in many various ways as chosen
from a menu—can then be fit to the data. The
trendline will then be displayed along with the
equation relating A to B and a correlation coeffi-
cient r indicating “goodness of fit,” which ranges
from 0, if there is no statistically significant rela-
tionship, to ~1, indicating essentially a perfect fit
and very high statistical significance. In this arti-
cle r > 0.9 will be considered strong evidence of a
relationship. Note that the equation used for the
trendline is suggested by the data pattern (eye-
ball choice), and not necessarily by any physics-
type relationship!

3. Trendlines: It is convenient to summarize rela-
tionships indicated by these patterns in a mathe-
matical form by fitting a trendline through the
experimental data. Spreadsheet programs pro-
vide a menu of choices for the mathematical
form of these trendlines, but here there is no
clear physics guideline as to exactly what choice
is best. Thus, a certain additional arbitrariness
enters our heuristic model. In such cases, choos-
ing very simple trendlines that don’t “misbe-
have” just out of the range of fit seems
appropriate. But this choice was not based on
physics, just mathematical convenience. As a
way of controlling possible mathematical misbe-
haviors it is sometimes possible to attach an
additional condition that the fit equation must
satisfy. In our case, we might require the ratio
AB1/AS-2 to go to zero as AB1 goes to zero. Of
course, this cannot be guaranteed, but it is cer-
tainly plausible unless the frequency difference
between modes 2 and 5 went to zero also, requir-
ing the highly unlikely scenario of plate thick-
ness also going to zero. In fact, as noted above,
B1-ZOM Eq. (1) indicates that AB1 really can’t
go to zero because rib stiffness won’t go to zero
even if plate thickness goes to zero. (It is better
not to ask how zero-thickness plates can be
glued to the ribs, let alone hold them to shape.)

4. VIOCADEAS (VIOlin-Computer-Aided-
Design-Engineering-Analysis-System—an
acronym based on original IDEAS engineering
software package) experiments involve: 1) mea-
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suring the violin’s vibrations with a scanning
laser system while tapping the bridge at the G-
string corner with a small-force hammer, 2)
simultaneous sound measurements over a sphere
in an anechoic chamber, and 3) computed tomog-
raphy (CT) scans of each violin to determine
shape and density information about each violin.
If the experimental measurements are combined
with finite element calculations of violin vibra-
tions based on a solid model created from the CT
scans (with fixed shape and density properties),
material stiffness properties can be extracted. If
experimental top and back plate mode shapes
and frequencies are available, it is possible to iso-
late the top or back plate in the computer model
and calculate vibration mode frequencies and
shapes for these separately, further improving
our knowledge of the material properties of these
two most important violin substructures.

5. Shells: For those interested in quantifying
extensional vs. flexural, there is a generalized
simple equation for a shell mode frequency f = (A
+ Bh?)"” where A and B are constant for a mode
and only shell thickness h varies. This equation
offers a guide to classifying whether a mode is
primarily extensional or flexural. For example, a
mode is primarily extensional if: 1) as h
approaches 0, the mode frequency = constant, or
2) A >>>Bh’so f = constant again. A mode is pri-
marily flexural if: 1) Bh* >> A, so f = B"* h, or 2)
f vs. h plot looks like a straight line, and mode
frequency is much larger than intercept (h = 0)
frequency. While a spreadsheet generally does
not allow you to use an arbitrary equation for
trendline fits, this shell equation was used to
compute frequencies with empirical choices for
the A and B constants that achieved excellent
agreement with the data in Fig. 2. The results for
mode 2 were a frequency intercept of 0 Hz (this
means A" = 0 for h = 0) vs. typical mode 2 fre-
quencies near 180 Hz; mode 5 had a frequency
intercept of 220 Hz vs. a typical mode frequency
near 330 Hz. From these numbers we can con-
clude that mode 2 is definitely flexural in char-
acter and that the plate behaves approximately
as a flat plate. Mode 5, however, clearly has a lot
of extensional character, although the thicker
the plate, the less important this is. An interest-
ing future simulation experiment would be to
track mode frequencies vs. plate thickness for
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varying plate archings—low, high, flat, etc.
Beldie [13] has presented a very interesting pho-
tographic comparison of the evolution of flat,
rectangular, spruce plate modes, to flat violin-
shaped (with f-holes) plate modes, to arched vio-
lin top plate (with f-holes, but no bassbar)
modes.
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